L(s) = 1 | + (−1 − 1.73i)2-s + (−0.999 + 1.73i)4-s + (−0.5 − 0.866i)5-s − 2·7-s + (−0.999 + 1.73i)10-s − 11-s + (−1 + 1.73i)13-s + (2 + 3.46i)14-s + (1.99 + 3.46i)16-s + (1 + 1.73i)17-s + (0.5 − 4.33i)19-s + 1.99·20-s + (1 + 1.73i)22-s + (−2 + 3.46i)23-s + (−0.499 + 0.866i)25-s + 3.99·26-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.499 + 0.866i)4-s + (−0.223 − 0.387i)5-s − 0.755·7-s + (−0.316 + 0.547i)10-s − 0.301·11-s + (−0.277 + 0.480i)13-s + (0.534 + 0.925i)14-s + (0.499 + 0.866i)16-s + (0.242 + 0.420i)17-s + (0.114 − 0.993i)19-s + 0.447·20-s + (0.213 + 0.369i)22-s + (−0.417 + 0.722i)23-s + (−0.0999 + 0.173i)25-s + 0.784·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.194i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 - 0.194i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.454846 + 0.0446687i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.454846 + 0.0446687i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 4.33i)T \) |
good | 2 | \( 1 + (1 + 1.73i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.5 - 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 9T + 31T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (-3 - 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5 - 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.5 - 6.06i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.5 - 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1 - 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.5 - 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (-7.5 + 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4 + 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06496887997571188568372579276, −9.578585425157977158166402087983, −8.823891639794973622071575360048, −7.991302407321706792940116171683, −6.87039490964308721185378737496, −5.83913511088496611302519651540, −4.57273640999181821139680983898, −3.44140134278225894866407295581, −2.55049806438771253506578357835, −1.19421792358769823450248978076,
0.31082209352004422010129065543, 2.62829742395206648303128737856, 3.74962826770606527586403925467, 5.22894987034112835940943554929, 6.09868091765882844558306414210, 6.77707456650631560855526090043, 7.66944690655925747248321042081, 8.194598918281192397179924319906, 9.193800225628552139420118205639, 9.995493294926909727146135503914