L(s) = 1 | + (−0.656 − 1.13i)2-s + (0.138 − 0.239i)4-s + (−0.5 − 0.866i)5-s + 3.11·7-s − 2.98·8-s + (−0.656 + 1.13i)10-s + 0.692·11-s + (2.07 − 3.58i)13-s + (−2.04 − 3.54i)14-s + (1.68 + 2.91i)16-s + (1.40 + 2.43i)17-s + (−1.62 − 4.04i)19-s − 0.277·20-s + (−0.454 − 0.787i)22-s + (1.51 − 2.62i)23-s + ⋯ |
L(s) = 1 | + (−0.464 − 0.803i)2-s + (0.0692 − 0.119i)4-s + (−0.223 − 0.387i)5-s + 1.17·7-s − 1.05·8-s + (−0.207 + 0.359i)10-s + 0.208·11-s + (0.574 − 0.995i)13-s + (−0.546 − 0.946i)14-s + (0.421 + 0.729i)16-s + (0.340 + 0.589i)17-s + (−0.373 − 0.927i)19-s − 0.0619·20-s + (−0.0969 − 0.167i)22-s + (0.315 − 0.547i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.768 + 0.639i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.768 + 0.639i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.438668 - 1.21385i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.438668 - 1.21385i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (1.62 + 4.04i)T \) |
good | 2 | \( 1 + (0.656 + 1.13i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 - 3.11T + 7T^{2} \) |
| 11 | \( 1 - 0.692T + 11T^{2} \) |
| 13 | \( 1 + (-2.07 + 3.58i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.40 - 2.43i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.51 + 2.62i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.93 + 3.35i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.374T + 31T^{2} \) |
| 37 | \( 1 + 1.34T + 37T^{2} \) |
| 41 | \( 1 + (4.77 + 8.26i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.32 - 4.02i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.0650 + 0.112i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.442 + 0.766i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.719 - 1.24i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.63 - 2.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.44 - 9.43i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.75 + 9.97i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.37 + 4.12i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.37 + 9.31i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 0.386T + 83T^{2} \) |
| 89 | \( 1 + (3.37 - 5.83i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.16 - 3.74i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11024524545707403973881925545, −8.876316445115328043349634518414, −8.507427775198887612825190738414, −7.53624861776174055404071265132, −6.27092677414563375656603839654, −5.37879903224547050931210501721, −4.37054696027163033609258013813, −3.09494019522953033184110928207, −1.86696174366813190151397693864, −0.77719332900058188010767277185,
1.63669639288746575279086886005, 3.14052022581388548934377660428, 4.26104081120246887782559408397, 5.42659866723643001555352881370, 6.44279410873033105364203659410, 7.17122104647591746668455081839, 7.963477526850273841014578541314, 8.578354265659024856524839818159, 9.386928380670238189291344302502, 10.48183700641666320141936176505