L(s) = 1 | + (−1.34 − 2.33i)2-s + (−2.62 + 4.54i)4-s + (0.5 + 0.866i)5-s − 0.797·7-s + 8.73·8-s + (1.34 − 2.33i)10-s − 2.59·11-s + (1.39 − 2.42i)13-s + (1.07 + 1.85i)14-s + (−6.50 − 11.2i)16-s + (−2.88 − 4.99i)17-s + (2.45 + 3.60i)19-s − 5.24·20-s + (3.48 + 6.04i)22-s + (−1.55 + 2.68i)23-s + ⋯ |
L(s) = 1 | + (−0.951 − 1.64i)2-s + (−1.31 + 2.27i)4-s + (0.223 + 0.387i)5-s − 0.301·7-s + 3.08·8-s + (0.425 − 0.737i)10-s − 0.781·11-s + (0.387 − 0.671i)13-s + (0.286 + 0.496i)14-s + (−1.62 − 2.81i)16-s + (−0.700 − 1.21i)17-s + (0.562 + 0.826i)19-s − 1.17·20-s + (0.743 + 1.28i)22-s + (−0.323 + 0.560i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 - 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.236553 + 0.115448i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.236553 + 0.115448i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-2.45 - 3.60i)T \) |
good | 2 | \( 1 + (1.34 + 2.33i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + 0.797T + 7T^{2} \) |
| 11 | \( 1 + 2.59T + 11T^{2} \) |
| 13 | \( 1 + (-1.39 + 2.42i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.88 + 4.99i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.55 - 2.68i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.39 - 4.14i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.48T + 31T^{2} \) |
| 37 | \( 1 - 7.69T + 37T^{2} \) |
| 41 | \( 1 + (-3.69 - 6.39i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.39 - 2.42i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.53 - 9.59i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.43 - 7.68i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.540 - 0.935i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.03 - 3.52i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.88 - 11.9i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.98 + 10.3i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.25 + 7.36i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.24 + 5.61i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 2.79T + 83T^{2} \) |
| 89 | \( 1 + (6.67 - 11.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34116881028450907917776304720, −9.556577141408212470664117821540, −9.088351029025654123162585076802, −7.86242028326405427129666496038, −7.45042931497203957003952776002, −5.85769073522034600479660005671, −4.58359337660004449845468638798, −3.31492392591159664152133541566, −2.75472719549048960286671918024, −1.45412320360186356602744331257,
0.18013229128337913096186245505, 1.89595407148797401177457030229, 4.09733131179694296434640074628, 5.13546144782887627758283129465, 5.94971220871469032924727867555, 6.66467236789984922286106930298, 7.54170675149234265396688706700, 8.346792249042652406884572859944, 9.021913442403471577975414586617, 9.663022687502020795338160834918