L(s) = 1 | + (0.690 + 1.19i)2-s + (0.0458 − 0.0794i)4-s + (0.5 + 0.866i)5-s − 4.36·7-s + 2.88·8-s + (−0.690 + 1.19i)10-s + 4.31·11-s + (3.18 − 5.51i)13-s + (−3.01 − 5.21i)14-s + (1.90 + 3.29i)16-s + (2.85 + 4.95i)17-s + (2.97 + 3.18i)19-s + 0.0917·20-s + (2.98 + 5.16i)22-s + (−0.289 + 0.501i)23-s + ⋯ |
L(s) = 1 | + (0.488 + 0.845i)2-s + (0.0229 − 0.0397i)4-s + (0.223 + 0.387i)5-s − 1.64·7-s + 1.02·8-s + (−0.218 + 0.378i)10-s + 1.30·11-s + (0.882 − 1.52i)13-s + (−0.805 − 1.39i)14-s + (0.476 + 0.824i)16-s + (0.693 + 1.20i)17-s + (0.681 + 0.731i)19-s + 0.0205·20-s + (0.635 + 1.10i)22-s + (−0.0604 + 0.104i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.488 - 0.872i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.488 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.92651 + 1.12966i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.92651 + 1.12966i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-2.97 - 3.18i)T \) |
good | 2 | \( 1 + (-0.690 - 1.19i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + 4.36T + 7T^{2} \) |
| 11 | \( 1 - 4.31T + 11T^{2} \) |
| 13 | \( 1 + (-3.18 + 5.51i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.85 - 4.95i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (0.289 - 0.501i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.77 - 3.07i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.18T + 31T^{2} \) |
| 37 | \( 1 + 6.54T + 37T^{2} \) |
| 41 | \( 1 + (0.381 + 0.660i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.18 - 5.51i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.36 - 2.36i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.56 + 4.44i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.91 - 3.31i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.01 + 10.4i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.00 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.53 - 2.66i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.04 + 7.00i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.66 + 9.81i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 7.67T + 83T^{2} \) |
| 89 | \( 1 + (-4.92 + 8.52i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21904577147286472279683956479, −9.649463724282931846164675978484, −8.480472267083428402709164401723, −7.50012408391730537345725815714, −6.56760911047723808011929326156, −6.07551753297974820042337777982, −5.48351815867136827091332318335, −3.79204185665106746628438819864, −3.30045214767654285061351965676, −1.34601421350692043109777459324,
1.18293504847763992515418138062, 2.58929031955225532426223690092, 3.62109176139026843101015426110, 4.20735372439016246549310961310, 5.55174736425381897018626541603, 6.74456207727086610366391668272, 7.08024606984096454570633404654, 8.702972254313098748613615542308, 9.422615702062892633012434758962, 9.906153919586727420529262803742