L(s) = 1 | + (0.464 − 0.804i)2-s + (0.568 + 0.984i)4-s + (−0.5 + 0.866i)5-s − 3.66·7-s + 2.91·8-s + (0.464 + 0.804i)10-s + 1.41·11-s + (1.38 + 2.39i)13-s + (−1.70 + 2.94i)14-s + (0.216 − 0.374i)16-s + (−1.62 + 2.81i)17-s + (−4.34 − 0.336i)19-s − 1.13·20-s + (0.658 − 1.14i)22-s + (4.21 + 7.29i)23-s + ⋯ |
L(s) = 1 | + (0.328 − 0.568i)2-s + (0.284 + 0.492i)4-s + (−0.223 + 0.387i)5-s − 1.38·7-s + 1.03·8-s + (0.146 + 0.254i)10-s + 0.427·11-s + (0.383 + 0.663i)13-s + (−0.454 + 0.787i)14-s + (0.0540 − 0.0936i)16-s + (−0.393 + 0.681i)17-s + (−0.997 − 0.0772i)19-s − 0.254·20-s + (0.140 − 0.243i)22-s + (0.878 + 1.52i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.378 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.378 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24638 + 0.836996i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24638 + 0.836996i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (4.34 + 0.336i)T \) |
good | 2 | \( 1 + (-0.464 + 0.804i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 + 3.66T + 7T^{2} \) |
| 11 | \( 1 - 1.41T + 11T^{2} \) |
| 13 | \( 1 + (-1.38 - 2.39i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.62 - 2.81i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-4.21 - 7.29i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.917 - 1.58i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.85T + 31T^{2} \) |
| 37 | \( 1 + 9.00T + 37T^{2} \) |
| 41 | \( 1 + (1.82 - 3.15i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.41 - 7.65i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.37 - 9.30i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.56 + 6.16i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.65 + 4.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.64 - 2.84i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.32 + 10.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.28 + 12.6i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.964 - 1.67i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.25 + 10.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.46T + 83T^{2} \) |
| 89 | \( 1 + (-5.27 - 9.12i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.311 + 0.539i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54800633062986745249294600504, −9.588574485516309240824385961100, −8.760564848261809028309590705407, −7.71165942006154202944068225165, −6.65727745182226727933989318324, −6.36923153875030141332027824735, −4.67834738959159443004043379284, −3.63117959570434677938916164646, −3.13325629599889226894999845028, −1.78018175126674702442617962390,
0.64450585148328625532375558497, 2.44871443536525424311067080586, 3.74699453345249183204617524672, 4.79382606467133991318677585134, 5.75004498075543340894235536762, 6.66984244171689819693616650052, 6.98914659197292000506822286753, 8.400710236116696866341783630911, 9.057018062152816905589707073645, 10.23463280604152393878024758000