L(s) = 1 | + (−0.832 + 1.44i)2-s + (−0.385 − 0.667i)4-s + (0.5 − 0.866i)5-s − 2.43·7-s − 2.04·8-s + (0.832 + 1.44i)10-s + 5.75·11-s + (0.797 + 1.38i)13-s + (2.02 − 3.51i)14-s + (2.47 − 4.28i)16-s + (−2.99 + 5.18i)17-s + (0.149 + 4.35i)19-s − 0.770·20-s + (−4.78 + 8.29i)22-s + (−0.470 − 0.814i)23-s + ⋯ |
L(s) = 1 | + (−0.588 + 1.01i)2-s + (−0.192 − 0.333i)4-s + (0.223 − 0.387i)5-s − 0.920·7-s − 0.723·8-s + (0.263 + 0.455i)10-s + 1.73·11-s + (0.221 + 0.383i)13-s + (0.541 − 0.938i)14-s + (0.618 − 1.07i)16-s + (−0.725 + 1.25i)17-s + (0.0342 + 0.999i)19-s − 0.172·20-s + (−1.02 + 1.76i)22-s + (−0.0980 − 0.169i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 - 0.272i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.962 - 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.115273 + 0.828601i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.115273 + 0.828601i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.149 - 4.35i)T \) |
good | 2 | \( 1 + (0.832 - 1.44i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 + 2.43T + 7T^{2} \) |
| 11 | \( 1 - 5.75T + 11T^{2} \) |
| 13 | \( 1 + (-0.797 - 1.38i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.99 - 5.18i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.470 + 0.814i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.30 - 2.26i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 5.26T + 31T^{2} \) |
| 37 | \( 1 + 2.89T + 37T^{2} \) |
| 41 | \( 1 + (3.15 - 5.46i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.26 - 3.93i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.47 - 7.75i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.09 + 1.90i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.39 - 9.35i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.26 - 9.11i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.504 + 0.874i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.41 + 7.65i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.12 + 8.87i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.80 - 6.58i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.11T + 83T^{2} \) |
| 89 | \( 1 + (5.55 + 9.62i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.02 - 3.51i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21158190727400520614609796735, −9.333608382420005169910813054062, −8.903947516319117569535886804219, −8.120268008720542017168184898610, −6.96724301849161533511742614207, −6.35920203583620029445137389172, −5.85656080214613078406659786619, −4.25494252330700824023230794395, −3.35626474904445443186868890322, −1.54307165594303187994163764905,
0.50101185179644213052015808481, 1.98599584694246623578588368616, 3.07030947619493202354841921007, 3.88472679384120401836427720581, 5.43722387299105896898049648838, 6.61712719514904495702439197614, 6.91951889666994480654277295136, 8.585059925627704184699044382152, 9.343986293075103010911957215849, 9.636837030151793933378388933548