Properties

Label 2-85176-1.1-c1-0-46
Degree $2$
Conductor $85176$
Sign $-1$
Analytic cond. $680.133$
Root an. cond. $26.0793$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s − 3·11-s + 17-s + 5·19-s − 2·23-s − 25-s − 29-s − 2·31-s − 2·35-s + 2·37-s − 5·41-s + 2·43-s + 3·47-s + 49-s + 9·53-s − 6·55-s + 6·59-s + 13·61-s + 2·67-s + 12·71-s − 8·73-s + 3·77-s − 17·79-s + 2·85-s + 5·89-s + 10·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s − 0.904·11-s + 0.242·17-s + 1.14·19-s − 0.417·23-s − 1/5·25-s − 0.185·29-s − 0.359·31-s − 0.338·35-s + 0.328·37-s − 0.780·41-s + 0.304·43-s + 0.437·47-s + 1/7·49-s + 1.23·53-s − 0.809·55-s + 0.781·59-s + 1.66·61-s + 0.244·67-s + 1.42·71-s − 0.936·73-s + 0.341·77-s − 1.91·79-s + 0.216·85-s + 0.529·89-s + 1.02·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 85176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(85176\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(680.133\)
Root analytic conductor: \(26.0793\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{85176} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 85176,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 17 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 5 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13083434776461, −13.52967618545994, −13.30823349485721, −12.84350495868470, −12.18139212978827, −11.77505738690590, −11.17441095548985, −10.59324315621636, −10.04837395970041, −9.773766528892490, −9.347538985307772, −8.606484463962448, −8.175825618352604, −7.499425138390738, −7.083596559086223, −6.476310440003395, −5.779425941836958, −5.417536235165161, −5.112995081253040, −4.077475562966865, −3.682369407224443, −2.773048525897175, −2.478080335882725, −1.682410795844737, −0.9426721924799314, 0, 0.9426721924799314, 1.682410795844737, 2.478080335882725, 2.773048525897175, 3.682369407224443, 4.077475562966865, 5.112995081253040, 5.417536235165161, 5.779425941836958, 6.476310440003395, 7.083596559086223, 7.499425138390738, 8.175825618352604, 8.606484463962448, 9.347538985307772, 9.773766528892490, 10.04837395970041, 10.59324315621636, 11.17441095548985, 11.77505738690590, 12.18139212978827, 12.84350495868470, 13.30823349485721, 13.52967618545994, 14.13083434776461

Graph of the $Z$-function along the critical line