Properties

Label 2-850-17.13-c1-0-1
Degree $2$
Conductor $850$
Sign $-0.788 + 0.615i$
Analytic cond. $6.78728$
Root an. cond. $2.60524$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + (1 + i)3-s − 4-s + (−1 + i)6-s + (−3 + 3i)7-s i·8-s i·9-s + (1 − i)11-s + (−1 − i)12-s − 4·13-s + (−3 − 3i)14-s + 16-s + (−4 − i)17-s + 18-s + 6i·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + (0.577 + 0.577i)3-s − 0.5·4-s + (−0.408 + 0.408i)6-s + (−1.13 + 1.13i)7-s − 0.353i·8-s − 0.333i·9-s + (0.301 − 0.301i)11-s + (−0.288 − 0.288i)12-s − 1.10·13-s + (−0.801 − 0.801i)14-s + 0.250·16-s + (−0.970 − 0.242i)17-s + 0.235·18-s + 1.37i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.788 + 0.615i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.788 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $-0.788 + 0.615i$
Analytic conductor: \(6.78728\)
Root analytic conductor: \(2.60524\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{850} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 850,\ (\ :1/2),\ -0.788 + 0.615i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.208617 - 0.606179i\)
\(L(\frac12)\) \(\approx\) \(0.208617 - 0.606179i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 \)
17 \( 1 + (4 + i)T \)
good3 \( 1 + (-1 - i)T + 3iT^{2} \)
7 \( 1 + (3 - 3i)T - 7iT^{2} \)
11 \( 1 + (-1 + i)T - 11iT^{2} \)
13 \( 1 + 4T + 13T^{2} \)
19 \( 1 - 6iT - 19T^{2} \)
23 \( 1 + (5 - 5i)T - 23iT^{2} \)
29 \( 1 + (7 + 7i)T + 29iT^{2} \)
31 \( 1 + (-1 - i)T + 31iT^{2} \)
37 \( 1 + (-5 - 5i)T + 37iT^{2} \)
41 \( 1 + (-1 + i)T - 41iT^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 - 2T + 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 6iT - 59T^{2} \)
61 \( 1 + (9 - 9i)T - 61iT^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 + (-1 - i)T + 71iT^{2} \)
73 \( 1 + (-1 - i)T + 73iT^{2} \)
79 \( 1 + (3 - 3i)T - 79iT^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + (5 + 5i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19429158584044414967889015075, −9.537089356682639678078269648156, −9.187529729373138437347782104952, −8.267633069808852289287899598571, −7.31193655992645910346450841263, −6.14997234531860464798974891065, −5.76509771340227728094940697645, −4.34292738996457693223430955403, −3.48984365777179068116076986396, −2.39826061655109100279762976875, 0.26890002626491573216147837268, 2.00315602549856488544676077011, 2.88788875679893765567404598331, 4.03943970988366409309752101067, 4.88880332048487797652510241811, 6.50501936871292806315841927328, 7.14197283764333417246816452863, 7.925989380606820536705383953874, 9.090345444240318866568554575810, 9.628096808383422142325345809895

Graph of the $Z$-function along the critical line