L(s) = 1 | + i·2-s + (1 + i)3-s − 4-s + (−1 + i)6-s + (−3 + 3i)7-s − i·8-s − i·9-s + (1 − i)11-s + (−1 − i)12-s − 4·13-s + (−3 − 3i)14-s + 16-s + (−4 − i)17-s + 18-s + 6i·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.577 + 0.577i)3-s − 0.5·4-s + (−0.408 + 0.408i)6-s + (−1.13 + 1.13i)7-s − 0.353i·8-s − 0.333i·9-s + (0.301 − 0.301i)11-s + (−0.288 − 0.288i)12-s − 1.10·13-s + (−0.801 − 0.801i)14-s + 0.250·16-s + (−0.970 − 0.242i)17-s + 0.235·18-s + 1.37i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.788 + 0.615i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.788 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.208617 - 0.606179i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.208617 - 0.606179i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (4 + i)T \) |
good | 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + (3 - 3i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1 + i)T - 11iT^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 19 | \( 1 - 6iT - 19T^{2} \) |
| 23 | \( 1 + (5 - 5i)T - 23iT^{2} \) |
| 29 | \( 1 + (7 + 7i)T + 29iT^{2} \) |
| 31 | \( 1 + (-1 - i)T + 31iT^{2} \) |
| 37 | \( 1 + (-5 - 5i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1 + i)T - 41iT^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 + (9 - 9i)T - 61iT^{2} \) |
| 67 | \( 1 - 2T + 67T^{2} \) |
| 71 | \( 1 + (-1 - i)T + 71iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + 73iT^{2} \) |
| 79 | \( 1 + (3 - 3i)T - 79iT^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + (5 + 5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19429158584044414967889015075, −9.537089356682639678078269648156, −9.187529729373138437347782104952, −8.267633069808852289287899598571, −7.31193655992645910346450841263, −6.14997234531860464798974891065, −5.76509771340227728094940697645, −4.34292738996457693223430955403, −3.48984365777179068116076986396, −2.39826061655109100279762976875,
0.26890002626491573216147837268, 2.00315602549856488544676077011, 2.88788875679893765567404598331, 4.03943970988366409309752101067, 4.88880332048487797652510241811, 6.50501936871292806315841927328, 7.14197283764333417246816452863, 7.925989380606820536705383953874, 9.090345444240318866568554575810, 9.628096808383422142325345809895