L(s) = 1 | − 2-s + (−1 − i)3-s − 4-s + (−2 + i)5-s + (1 + i)6-s + (−3 + 3i)7-s + 3·8-s − i·9-s + (2 − i)10-s + (−3 − 3i)11-s + (1 + i)12-s + (3 − 3i)14-s + (3 + i)15-s − 16-s + (−1 − 4i)17-s + i·18-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.577 − 0.577i)3-s − 0.5·4-s + (−0.894 + 0.447i)5-s + (0.408 + 0.408i)6-s + (−1.13 + 1.13i)7-s + 1.06·8-s − 0.333i·9-s + (0.632 − 0.316i)10-s + (−0.904 − 0.904i)11-s + (0.288 + 0.288i)12-s + (0.801 − 0.801i)14-s + (0.774 + 0.258i)15-s − 0.250·16-s + (−0.242 − 0.970i)17-s + 0.235i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 - 0.197i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 - 0.197i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2 - i)T \) |
| 17 | \( 1 + (1 + 4i)T \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 7 | \( 1 + (3 - 3i)T - 7iT^{2} \) |
| 11 | \( 1 + (3 + 3i)T + 11iT^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 19 | \( 1 - 6iT - 19T^{2} \) |
| 23 | \( 1 + (-1 + i)T - 23iT^{2} \) |
| 29 | \( 1 + (3 - 3i)T - 29iT^{2} \) |
| 31 | \( 1 + (1 - i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 + (3 + 3i)T + 41iT^{2} \) |
| 43 | \( 1 + 12T + 43T^{2} \) |
| 47 | \( 1 + 2iT - 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 + 6iT - 67T^{2} \) |
| 71 | \( 1 + (-3 + 3i)T - 71iT^{2} \) |
| 73 | \( 1 + (-3 - 3i)T + 73iT^{2} \) |
| 79 | \( 1 + (7 + 7i)T + 79iT^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (-3 - 3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.42611989823108419734907230713, −12.48684728758773046959987897227, −11.59762270034917081739924900375, −10.32552968461798858128312043103, −9.119068847231446390664997108869, −8.085648823994533951087094693706, −6.79747013306469590511452414662, −5.50118783410996279208378411556, −3.32137479342394424359904830677, 0,
4.01696982023488393293456825090, 4.95977831271023141004118810141, 7.09993871166123286783735789360, 8.097617687612107227145122256818, 9.536000449672005898168666201275, 10.32599067382036335971290078469, 11.18274439729825220667769445726, 12.94830783645454108530989986535, 13.32630533814246610775881387999