L(s) = 1 | + 2.31i·2-s − 0.203i·3-s − 3.36·4-s + (−1.55 + 1.60i)5-s + 0.470·6-s + 0.683i·7-s − 3.16i·8-s + 2.95·9-s + (−3.71 − 3.60i)10-s + 3.68·11-s + 0.683i·12-s − 4.43i·13-s − 1.58·14-s + (0.326 + 0.316i)15-s + 0.593·16-s − i·17-s + ⋯ |
L(s) = 1 | + 1.63i·2-s − 0.117i·3-s − 1.68·4-s + (−0.696 + 0.717i)5-s + 0.192·6-s + 0.258i·7-s − 1.11i·8-s + 0.986·9-s + (−1.17 − 1.14i)10-s + 1.10·11-s + 0.197i·12-s − 1.23i·13-s − 0.423·14-s + (0.0842 + 0.0816i)15-s + 0.148·16-s − 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.717 - 0.696i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.717 - 0.696i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.331436 + 0.817960i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.331436 + 0.817960i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.55 - 1.60i)T \) |
| 17 | \( 1 + iT \) |
good | 2 | \( 1 - 2.31iT - 2T^{2} \) |
| 3 | \( 1 + 0.203iT - 3T^{2} \) |
| 7 | \( 1 - 0.683iT - 7T^{2} \) |
| 11 | \( 1 - 3.68T + 11T^{2} \) |
| 13 | \( 1 + 4.43iT - 13T^{2} \) |
| 19 | \( 1 - 1.03T + 19T^{2} \) |
| 23 | \( 1 - 4.52iT - 23T^{2} \) |
| 29 | \( 1 - 3.69T + 29T^{2} \) |
| 31 | \( 1 + 10.8T + 31T^{2} \) |
| 37 | \( 1 - 0.308iT - 37T^{2} \) |
| 41 | \( 1 + 6.15T + 41T^{2} \) |
| 43 | \( 1 + 7.88iT - 43T^{2} \) |
| 47 | \( 1 - 4.43iT - 47T^{2} \) |
| 53 | \( 1 + 11.4iT - 53T^{2} \) |
| 59 | \( 1 - 2T + 59T^{2} \) |
| 61 | \( 1 - 9.94T + 61T^{2} \) |
| 67 | \( 1 - 9.16iT - 67T^{2} \) |
| 71 | \( 1 + 9.37T + 71T^{2} \) |
| 73 | \( 1 - 2.26iT - 73T^{2} \) |
| 79 | \( 1 + 7.42T + 79T^{2} \) |
| 83 | \( 1 - 8.92iT - 83T^{2} \) |
| 89 | \( 1 + 11.5T + 89T^{2} \) |
| 97 | \( 1 + 12.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.96289471798943453735081011909, −14.03547804584369859740268541024, −12.81459608668323257132852710297, −11.51106472295164535490443351605, −9.998637889505309153297139003273, −8.648457557085089159805181634716, −7.46466157671337169734102840986, −6.84753743345032280555999676393, −5.47425074251320789156602539935, −3.84281891265127316846266739828,
1.48594716639625440615454634913, 3.82968295194503621722075766395, 4.52232654991690591442318789920, 7.00037624176233505161155877050, 8.786742033720323352214993238608, 9.563633682556837462770448084217, 10.77773018970947844274856555189, 11.79166843270580616596967633554, 12.43093412148718433861311082548, 13.40892906567950363194232717018