L(s) = 1 | + (−1.27 + 1.27i)2-s + (0.635 + 0.263i)3-s − 1.26i·4-s + (−0.382 + 0.923i)5-s + (−1.14 + 0.475i)6-s + (1.66 + 4.01i)7-s + (−0.943 − 0.943i)8-s + (−1.78 − 1.78i)9-s + (−0.691 − 1.66i)10-s + (0.0485 − 0.0200i)11-s + (0.331 − 0.801i)12-s + 3.02i·13-s + (−7.24 − 3.00i)14-s + (−0.486 + 0.486i)15-s + 4.93·16-s + (3.12 − 2.69i)17-s + ⋯ |
L(s) = 1 | + (−0.902 + 0.902i)2-s + (0.366 + 0.151i)3-s − 0.630i·4-s + (−0.171 + 0.413i)5-s + (−0.468 + 0.194i)6-s + (0.628 + 1.51i)7-s + (−0.333 − 0.333i)8-s + (−0.595 − 0.595i)9-s + (−0.218 − 0.527i)10-s + (0.0146 − 0.00605i)11-s + (0.0958 − 0.231i)12-s + 0.839i·13-s + (−1.93 − 0.801i)14-s + (−0.125 + 0.125i)15-s + 1.23·16-s + (0.757 − 0.653i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.357 - 0.933i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.357 - 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.388946 + 0.565370i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.388946 + 0.565370i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.382 - 0.923i)T \) |
| 17 | \( 1 + (-3.12 + 2.69i)T \) |
good | 2 | \( 1 + (1.27 - 1.27i)T - 2iT^{2} \) |
| 3 | \( 1 + (-0.635 - 0.263i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-1.66 - 4.01i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.0485 + 0.0200i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 3.02iT - 13T^{2} \) |
| 19 | \( 1 + (-5.52 + 5.52i)T - 19iT^{2} \) |
| 23 | \( 1 + (-0.962 + 0.398i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (0.161 - 0.388i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (1.27 + 0.529i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.311 - 0.128i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-2.52 - 6.09i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (7.06 + 7.06i)T + 43iT^{2} \) |
| 47 | \( 1 + 6.13iT - 47T^{2} \) |
| 53 | \( 1 + (8.52 - 8.52i)T - 53iT^{2} \) |
| 59 | \( 1 + (-3.60 - 3.60i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.28 + 5.51i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 0.916T + 67T^{2} \) |
| 71 | \( 1 + (-3.86 - 1.59i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-2.06 + 4.98i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-9.22 + 3.82i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (4.61 - 4.61i)T - 83iT^{2} \) |
| 89 | \( 1 + 10.2iT - 89T^{2} \) |
| 97 | \( 1 + (7.35 - 17.7i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.97119555941627581075075297323, −14.00558851564583653151953233849, −12.12540885740275242910751511586, −11.46867239653183029437845856424, −9.497012631918557886392349026829, −8.995598883797923182474165222500, −7.948997564671410357385020914539, −6.71503010222998048490363436435, −5.40151137997810538548560121226, −2.99659937610804764127536307363,
1.33827655602701050561650597032, 3.44413857038071724175409746614, 5.39028945694711164175971265103, 7.76876071815952544736206924410, 8.170356790309723809215911726870, 9.731188217355995470481937114084, 10.58689250012258831456892689253, 11.42477530148288017588409255862, 12.67544502985314878999553910183, 13.94098428678040777106638408339