L(s) = 1 | + (1.09 − 1.09i)2-s + (0.436 − 1.05i)3-s − 0.403i·4-s + (−0.923 − 0.382i)5-s + (−0.676 − 1.63i)6-s + (−3.45 + 1.43i)7-s + (1.74 + 1.74i)8-s + (1.20 + 1.20i)9-s + (−1.43 + 0.593i)10-s + (0.558 + 1.34i)11-s + (−0.425 − 0.176i)12-s − 6.71i·13-s + (−2.21 + 5.35i)14-s + (−0.806 + 0.806i)15-s + 4.64·16-s + (−4.12 + 0.148i)17-s + ⋯ |
L(s) = 1 | + (0.775 − 0.775i)2-s + (0.251 − 0.608i)3-s − 0.201i·4-s + (−0.413 − 0.171i)5-s + (−0.276 − 0.666i)6-s + (−1.30 + 0.541i)7-s + (0.618 + 0.618i)8-s + (0.400 + 0.400i)9-s + (−0.452 + 0.187i)10-s + (0.168 + 0.406i)11-s + (−0.122 − 0.0508i)12-s − 1.86i·13-s + (−0.593 + 1.43i)14-s + (−0.208 + 0.208i)15-s + 1.16·16-s + (−0.999 + 0.0360i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.483 + 0.875i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.483 + 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.14191 - 0.673716i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14191 - 0.673716i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.923 + 0.382i)T \) |
| 17 | \( 1 + (4.12 - 0.148i)T \) |
good | 2 | \( 1 + (-1.09 + 1.09i)T - 2iT^{2} \) |
| 3 | \( 1 + (-0.436 + 1.05i)T + (-2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (3.45 - 1.43i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.558 - 1.34i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 6.71iT - 13T^{2} \) |
| 19 | \( 1 + (1.32 - 1.32i)T - 19iT^{2} \) |
| 23 | \( 1 + (-1.61 - 3.90i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (7.01 + 2.90i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-0.495 + 1.19i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-1.72 + 4.17i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-1.45 + 0.601i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (4.56 + 4.56i)T + 43iT^{2} \) |
| 47 | \( 1 - 2.36iT - 47T^{2} \) |
| 53 | \( 1 + (-4.25 + 4.25i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7.29 - 7.29i)T + 59iT^{2} \) |
| 61 | \( 1 + (-2.90 + 1.20i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 6.08T + 67T^{2} \) |
| 71 | \( 1 + (1.46 - 3.53i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-12.9 - 5.35i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (0.916 + 2.21i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (11.9 - 11.9i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.59iT - 89T^{2} \) |
| 97 | \( 1 + (12.5 + 5.20i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.40732634566187812465668074924, −12.93579585951004146258091740466, −12.39872924621896956282829282995, −11.09504576490670125887790937713, −9.884960758481189962122038831189, −8.309537271834234748970369294953, −7.20134396840418303801662957056, −5.50463038523874269552164680812, −3.80595170404587214488247693041, −2.47672759645299743449605434089,
3.69077418884048571776617518432, 4.51702859598937648737741714164, 6.56214267727134729545756971410, 6.88149721976688501203294746585, 8.995539092348428615786228870534, 9.911455727146389640924969502402, 11.15243178594574564970534817551, 12.71546681158233379190863867139, 13.58329097305387428297619303530, 14.56846912693856927680366548260