L(s) = 1 | − 0.783i·2-s + (0.385 − 0.385i)3-s + 1.38·4-s + (−0.707 + 0.707i)5-s + (−0.301 − 0.301i)6-s + (−0.840 − 0.840i)7-s − 2.65i·8-s + 2.70i·9-s + (0.554 + 0.554i)10-s + (−1.80 − 1.80i)11-s + (0.534 − 0.534i)12-s − 0.368·13-s + (−0.658 + 0.658i)14-s + 0.544i·15-s + 0.693·16-s + (−2.46 + 3.30i)17-s + ⋯ |
L(s) = 1 | − 0.554i·2-s + (0.222 − 0.222i)3-s + 0.693·4-s + (−0.316 + 0.316i)5-s + (−0.123 − 0.123i)6-s + (−0.317 − 0.317i)7-s − 0.937i·8-s + 0.901i·9-s + (0.175 + 0.175i)10-s + (−0.544 − 0.544i)11-s + (0.154 − 0.154i)12-s − 0.102·13-s + (−0.175 + 0.175i)14-s + 0.140i·15-s + 0.173·16-s + (−0.597 + 0.801i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00714 - 0.404251i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00714 - 0.404251i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (2.46 - 3.30i)T \) |
good | 2 | \( 1 + 0.783iT - 2T^{2} \) |
| 3 | \( 1 + (-0.385 + 0.385i)T - 3iT^{2} \) |
| 7 | \( 1 + (0.840 + 0.840i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.80 + 1.80i)T + 11iT^{2} \) |
| 13 | \( 1 + 0.368T + 13T^{2} \) |
| 19 | \( 1 - 6.61iT - 19T^{2} \) |
| 23 | \( 1 + (2.73 + 2.73i)T + 23iT^{2} \) |
| 29 | \( 1 + (1.63 - 1.63i)T - 29iT^{2} \) |
| 31 | \( 1 + (-4.68 + 4.68i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.24 + 2.24i)T - 37iT^{2} \) |
| 41 | \( 1 + (5.16 + 5.16i)T + 41iT^{2} \) |
| 43 | \( 1 + 6.82iT - 43T^{2} \) |
| 47 | \( 1 - 7.80T + 47T^{2} \) |
| 53 | \( 1 - 8.01iT - 53T^{2} \) |
| 59 | \( 1 + 5.22iT - 59T^{2} \) |
| 61 | \( 1 + (-5.74 - 5.74i)T + 61iT^{2} \) |
| 67 | \( 1 + 7.94T + 67T^{2} \) |
| 71 | \( 1 + (-8.40 + 8.40i)T - 71iT^{2} \) |
| 73 | \( 1 + (10.4 - 10.4i)T - 73iT^{2} \) |
| 79 | \( 1 + (-0.575 - 0.575i)T + 79iT^{2} \) |
| 83 | \( 1 - 3.99iT - 83T^{2} \) |
| 89 | \( 1 - 9.14T + 89T^{2} \) |
| 97 | \( 1 + (4.99 - 4.99i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.95653431690253372012910852823, −12.94746818154322777360271289218, −11.94203746056054755701305760104, −10.71814071240957932579666241135, −10.24850616838637536926903791885, −8.314174624295601126789626816942, −7.31987578503170238547140125632, −5.98115673283250579907771985633, −3.81048101285519635290577436302, −2.26741207881119474684057189381,
2.82052032323703283600060930000, 4.82488185927175170488320408520, 6.36604859368559251388368254162, 7.39704706972795222354855796452, 8.713547089346197654991642266000, 9.810928896040372664563587986831, 11.32005489151324257170062682026, 12.13909247776387009204830596274, 13.38250916672018972629140759132, 14.76968241555613600492334305049