L(s) = 1 | + (−1.27 − 1.27i)2-s + (0.635 − 0.263i)3-s + 1.26i·4-s + (−0.382 − 0.923i)5-s + (−1.14 − 0.475i)6-s + (1.66 − 4.01i)7-s + (−0.943 + 0.943i)8-s + (−1.78 + 1.78i)9-s + (−0.691 + 1.66i)10-s + (0.0485 + 0.0200i)11-s + (0.331 + 0.801i)12-s − 3.02i·13-s + (−7.24 + 3.00i)14-s + (−0.486 − 0.486i)15-s + 4.93·16-s + (3.12 + 2.69i)17-s + ⋯ |
L(s) = 1 | + (−0.902 − 0.902i)2-s + (0.366 − 0.151i)3-s + 0.630i·4-s + (−0.171 − 0.413i)5-s + (−0.468 − 0.194i)6-s + (0.628 − 1.51i)7-s + (−0.333 + 0.333i)8-s + (−0.595 + 0.595i)9-s + (−0.218 + 0.527i)10-s + (0.0146 + 0.00605i)11-s + (0.0958 + 0.231i)12-s − 0.839i·13-s + (−1.93 + 0.801i)14-s + (−0.125 − 0.125i)15-s + 1.23·16-s + (0.757 + 0.653i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.357 + 0.933i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.357 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.388946 - 0.565370i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.388946 - 0.565370i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.382 + 0.923i)T \) |
| 17 | \( 1 + (-3.12 - 2.69i)T \) |
good | 2 | \( 1 + (1.27 + 1.27i)T + 2iT^{2} \) |
| 3 | \( 1 + (-0.635 + 0.263i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (-1.66 + 4.01i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.0485 - 0.0200i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 3.02iT - 13T^{2} \) |
| 19 | \( 1 + (-5.52 - 5.52i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.962 - 0.398i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (0.161 + 0.388i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (1.27 - 0.529i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.311 + 0.128i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-2.52 + 6.09i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (7.06 - 7.06i)T - 43iT^{2} \) |
| 47 | \( 1 - 6.13iT - 47T^{2} \) |
| 53 | \( 1 + (8.52 + 8.52i)T + 53iT^{2} \) |
| 59 | \( 1 + (-3.60 + 3.60i)T - 59iT^{2} \) |
| 61 | \( 1 + (2.28 - 5.51i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 0.916T + 67T^{2} \) |
| 71 | \( 1 + (-3.86 + 1.59i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-2.06 - 4.98i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (-9.22 - 3.82i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (4.61 + 4.61i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.2iT - 89T^{2} \) |
| 97 | \( 1 + (7.35 + 17.7i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.94098428678040777106638408339, −12.67544502985314878999553910183, −11.42477530148288017588409255862, −10.58689250012258831456892689253, −9.731188217355995470481937114084, −8.170356790309723809215911726870, −7.76876071815952544736206924410, −5.39028945694711164175971265103, −3.44413857038071724175409746614, −1.33827655602701050561650597032,
2.99659937610804764127536307363, 5.40151137997810538548560121226, 6.71503010222998048490363436435, 7.948997564671410357385020914539, 8.995598883797923182474165222500, 9.497012631918557886392349026829, 11.46867239653183029437845856424, 12.12540885740275242910751511586, 14.00558851564583653151953233849, 14.97119555941627581075075297323