L(s) = 1 | + (1.01 + 1.01i)2-s + (−0.101 + 0.0420i)3-s + 0.0689i·4-s + (0.382 + 0.923i)5-s + (−0.146 − 0.0604i)6-s + (−0.265 + 0.642i)7-s + (1.96 − 1.96i)8-s + (−2.11 + 2.11i)9-s + (−0.550 + 1.32i)10-s + (−4.48 − 1.85i)11-s + (−0.00290 − 0.00700i)12-s − 5.63i·13-s + (−0.923 + 0.382i)14-s + (−0.0777 − 0.0777i)15-s + 4.13·16-s + (1.63 + 3.78i)17-s + ⋯ |
L(s) = 1 | + (0.719 + 0.719i)2-s + (−0.0586 + 0.0242i)3-s + 0.0344i·4-s + (0.171 + 0.413i)5-s + (−0.0596 − 0.0246i)6-s + (−0.100 + 0.242i)7-s + (0.694 − 0.694i)8-s + (−0.704 + 0.704i)9-s + (−0.174 + 0.420i)10-s + (−1.35 − 0.559i)11-s + (−0.000837 − 0.00202i)12-s − 1.56i·13-s + (−0.246 + 0.102i)14-s + (−0.0200 − 0.0200i)15-s + 1.03·16-s + (0.395 + 0.918i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.729 - 0.683i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.729 - 0.683i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19127 + 0.470911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19127 + 0.470911i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.382 - 0.923i)T \) |
| 17 | \( 1 + (-1.63 - 3.78i)T \) |
good | 2 | \( 1 + (-1.01 - 1.01i)T + 2iT^{2} \) |
| 3 | \( 1 + (0.101 - 0.0420i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (0.265 - 0.642i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (4.48 + 1.85i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 5.63iT - 13T^{2} \) |
| 19 | \( 1 + (1.64 + 1.64i)T + 19iT^{2} \) |
| 23 | \( 1 + (-4.28 - 1.77i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-2.48 - 6.01i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (6.12 - 2.53i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.109 + 0.0453i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (0.412 - 0.996i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (0.453 - 0.453i)T - 43iT^{2} \) |
| 47 | \( 1 + 4.93iT - 47T^{2} \) |
| 53 | \( 1 + (-8.47 - 8.47i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7.01 + 7.01i)T - 59iT^{2} \) |
| 61 | \( 1 + (-0.613 + 1.48i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 2.99T + 67T^{2} \) |
| 71 | \( 1 + (4.33 - 1.79i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (2.10 + 5.08i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (13.7 + 5.68i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (3.56 + 3.56i)T + 83iT^{2} \) |
| 89 | \( 1 + 2.35iT - 89T^{2} \) |
| 97 | \( 1 + (1.03 + 2.49i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.50919908312216750792348459134, −13.37344708825482249993339512437, −12.78555265985954642496773408119, −10.80184772454441940688191000553, −10.41389371311337720006748720023, −8.450762980282738385565514630630, −7.34897298848361678039903604460, −5.76506917375159869962259661269, −5.25186822424864276388264760609, −3.05967928487064226286831040859,
2.49820052709460728138734361082, 4.15843029420639913947254401991, 5.39953461395510468291446127521, 7.16980342576747190446254547334, 8.596018225201871138955172673012, 9.895528340276405978589085530451, 11.24789448963188756117000756444, 12.04486270958082182843276153501, 12.98569773671864833455051182483, 13.84400169206765022811673230026