L(s) = 1 | + (−1.44 − 1.44i)2-s + (−1.22 − 2.95i)3-s + 2.18i·4-s + (0.923 − 0.382i)5-s + (−2.50 + 6.03i)6-s + (1.08 + 0.450i)7-s + (0.263 − 0.263i)8-s + (−5.09 + 5.09i)9-s + (−1.88 − 0.782i)10-s + (1.88 − 4.54i)11-s + (6.44 − 2.66i)12-s + 2.46i·13-s + (−0.921 − 2.22i)14-s + (−2.25 − 2.25i)15-s + 3.60·16-s + (−1.36 − 3.89i)17-s + ⋯ |
L(s) = 1 | + (−1.02 − 1.02i)2-s + (−0.706 − 1.70i)3-s + 1.09i·4-s + (0.413 − 0.171i)5-s + (−1.02 + 2.46i)6-s + (0.411 + 0.170i)7-s + (0.0931 − 0.0931i)8-s + (−1.69 + 1.69i)9-s + (−0.597 − 0.247i)10-s + (0.567 − 1.37i)11-s + (1.85 − 0.770i)12-s + 0.683i·13-s + (−0.246 − 0.594i)14-s + (−0.583 − 0.583i)15-s + 0.900·16-s + (−0.330 − 0.943i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.131i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.131i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0319985 + 0.484762i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0319985 + 0.484762i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.923 + 0.382i)T \) |
| 17 | \( 1 + (1.36 + 3.89i)T \) |
good | 2 | \( 1 + (1.44 + 1.44i)T + 2iT^{2} \) |
| 3 | \( 1 + (1.22 + 2.95i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-1.08 - 0.450i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.88 + 4.54i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 2.46iT - 13T^{2} \) |
| 19 | \( 1 + (1.44 + 1.44i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.0455 - 0.109i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-0.984 + 0.407i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-1.06 - 2.58i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.885 - 2.13i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (0.662 + 0.274i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-7.13 + 7.13i)T - 43iT^{2} \) |
| 47 | \( 1 - 3.39iT - 47T^{2} \) |
| 53 | \( 1 + (-9.84 - 9.84i)T + 53iT^{2} \) |
| 59 | \( 1 + (-1.07 + 1.07i)T - 59iT^{2} \) |
| 61 | \( 1 + (-7.46 - 3.09i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 4.92T + 67T^{2} \) |
| 71 | \( 1 + (-2.53 - 6.13i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-3.38 + 1.40i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-3.13 + 7.55i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (4.30 + 4.30i)T + 83iT^{2} \) |
| 89 | \( 1 - 8.46iT - 89T^{2} \) |
| 97 | \( 1 + (4.14 - 1.71i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.42996918896611198775031012923, −12.17286195377468432756849144222, −11.54997161356360265660410282282, −10.82421139318622319252396349576, −9.086803990336293222952378772307, −8.265427891099044015908694856375, −6.83587164202635661792252859864, −5.62317662787804155182241265765, −2.40705621098695212849327379128, −0.987172650165626962243973530006,
4.12106162840519913050752844776, 5.51748704203888310153410823974, 6.64893425705664633619425601090, 8.267874760419052620853422110532, 9.489602763268070972408244148188, 10.06340715409907134188378050064, 10.99663981904043413097439351990, 12.46405458576038021828335615739, 14.68606188558900471603478833566, 15.00198598864775666224815424052