L(s) = 1 | + (−0.254 − 0.254i)2-s + (0.0207 + 0.0501i)3-s − 1.87i·4-s + (0.923 − 0.382i)5-s + (0.00747 − 0.0180i)6-s + (0.275 + 0.114i)7-s + (−0.985 + 0.985i)8-s + (2.11 − 2.11i)9-s + (−0.332 − 0.137i)10-s + (−1.05 + 2.55i)11-s + (0.0937 − 0.0388i)12-s + 1.97i·13-s + (−0.0411 − 0.0994i)14-s + (0.0383 + 0.0383i)15-s − 3.23·16-s + (−1.21 + 3.94i)17-s + ⋯ |
L(s) = 1 | + (−0.180 − 0.180i)2-s + (0.0119 + 0.0289i)3-s − 0.935i·4-s + (0.413 − 0.171i)5-s + (0.00305 − 0.00736i)6-s + (0.104 + 0.0432i)7-s + (−0.348 + 0.348i)8-s + (0.706 − 0.706i)9-s + (−0.105 − 0.0435i)10-s + (−0.319 + 0.770i)11-s + (0.0270 − 0.0112i)12-s + 0.549i·13-s + (−0.0110 − 0.0265i)14-s + (0.00990 + 0.00990i)15-s − 0.809·16-s + (−0.293 + 0.955i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 + 0.693i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.719 + 0.693i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.870444 - 0.351216i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.870444 - 0.351216i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.923 + 0.382i)T \) |
| 17 | \( 1 + (1.21 - 3.94i)T \) |
good | 2 | \( 1 + (0.254 + 0.254i)T + 2iT^{2} \) |
| 3 | \( 1 + (-0.0207 - 0.0501i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-0.275 - 0.114i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (1.05 - 2.55i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 1.97iT - 13T^{2} \) |
| 19 | \( 1 + (1.99 + 1.99i)T + 19iT^{2} \) |
| 23 | \( 1 + (2.57 - 6.22i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-4.36 + 1.80i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-1.15 - 2.79i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (3.60 + 8.70i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-2.87 - 1.19i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-5.78 + 5.78i)T - 43iT^{2} \) |
| 47 | \( 1 + 1.08iT - 47T^{2} \) |
| 53 | \( 1 + (1.89 + 1.89i)T + 53iT^{2} \) |
| 59 | \( 1 + (6.47 - 6.47i)T - 59iT^{2} \) |
| 61 | \( 1 + (-10.3 - 4.28i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 12.5T + 67T^{2} \) |
| 71 | \( 1 + (2.25 + 5.43i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (0.200 - 0.0829i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (4.07 - 9.84i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (11.0 + 11.0i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.55iT - 89T^{2} \) |
| 97 | \( 1 + (-8.28 + 3.43i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.20750901806910801099956165882, −13.06498781672242605056937784290, −11.95540131090094637377917104131, −10.61440893111850320621373391270, −9.785330268432343865274720369674, −8.861904580878236399163892618880, −7.03817209901263431063813970437, −5.84655394083641571692404764062, −4.38417632166226787253342975634, −1.82640033083294669724485013956,
2.78746953348926650965759202979, 4.60749404670277446830063327538, 6.38052059334660242969843926709, 7.67670222979078573743822863297, 8.558890232574302589390526954754, 10.00744811108340410341144853446, 11.08228881131254135144852388977, 12.42503211866498636853312741959, 13.27674694546926300868903832728, 14.19439879426464434649359606771