L(s) = 1 | + (−0.528 − 0.528i)2-s + (1.17 + 2.84i)3-s − 1.44i·4-s + (−0.923 + 0.382i)5-s + (0.880 − 2.12i)6-s + (2.98 + 1.23i)7-s + (−1.81 + 1.81i)8-s + (−4.56 + 4.56i)9-s + (0.690 + 0.286i)10-s + (1.04 − 2.52i)11-s + (4.09 − 1.69i)12-s − 4.31i·13-s + (−0.925 − 2.23i)14-s + (−2.17 − 2.17i)15-s − 0.956·16-s + (−3.47 − 2.22i)17-s + ⋯ |
L(s) = 1 | + (−0.373 − 0.373i)2-s + (0.679 + 1.64i)3-s − 0.720i·4-s + (−0.413 + 0.171i)5-s + (0.359 − 0.867i)6-s + (1.12 + 0.467i)7-s + (−0.643 + 0.643i)8-s + (−1.52 + 1.52i)9-s + (0.218 + 0.0905i)10-s + (0.315 − 0.761i)11-s + (1.18 − 0.489i)12-s − 1.19i·13-s + (−0.247 − 0.596i)14-s + (−0.561 − 0.561i)15-s − 0.239·16-s + (−0.841 − 0.539i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.861 - 0.507i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.861 - 0.507i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.922619 + 0.251503i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.922619 + 0.251503i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 + (3.47 + 2.22i)T \) |
good | 2 | \( 1 + (0.528 + 0.528i)T + 2iT^{2} \) |
| 3 | \( 1 + (-1.17 - 2.84i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-2.98 - 1.23i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.04 + 2.52i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 4.31iT - 13T^{2} \) |
| 19 | \( 1 + (0.897 + 0.897i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.188 - 0.454i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (0.410 - 0.170i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (2.11 + 5.10i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-4.09 - 9.88i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (2.00 + 0.830i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-1.52 + 1.52i)T - 43iT^{2} \) |
| 47 | \( 1 - 8.39iT - 47T^{2} \) |
| 53 | \( 1 + (-1.28 - 1.28i)T + 53iT^{2} \) |
| 59 | \( 1 + (2.13 - 2.13i)T - 59iT^{2} \) |
| 61 | \( 1 + (-11.2 - 4.67i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 4.21T + 67T^{2} \) |
| 71 | \( 1 + (1.48 + 3.59i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (5.97 - 2.47i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (2.76 - 6.67i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-0.160 - 0.160i)T + 83iT^{2} \) |
| 89 | \( 1 + 13.3iT - 89T^{2} \) |
| 97 | \( 1 + (13.6 - 5.66i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.80185163038472687089210222526, −13.70637158540265430606187673575, −11.45983070103043998185579593999, −11.00056935983272965957904987338, −9.982645868982822140653082037850, −8.912370712636221101703471374563, −8.188466659213570999184646802548, −5.62142644629249515098599909945, −4.52864843745001145845525537944, −2.80548896473677538216553205172,
1.93543693104800046984715487414, 4.09948290286126213997464928233, 6.70682957295278224979330017064, 7.37143188237714541528540026542, 8.277640514884716915290997025452, 9.038122943085563692180363056723, 11.34577158764887912473525712203, 12.21643197598732643501210002393, 13.02613305535379477211567049259, 14.12384495018135912635278722047