L(s) = 1 | + 2.24i·2-s + (0.140 + 0.140i)3-s − 3.05·4-s + (0.707 + 0.707i)5-s + (−0.314 + 0.314i)6-s + (−1.33 + 1.33i)7-s − 2.37i·8-s − 2.96i·9-s + (−1.59 + 1.59i)10-s + (2.49 − 2.49i)11-s + (−0.428 − 0.428i)12-s + 1.27·13-s + (−3.00 − 3.00i)14-s + 0.198i·15-s − 0.766·16-s + (3.68 − 1.85i)17-s + ⋯ |
L(s) = 1 | + 1.59i·2-s + (0.0808 + 0.0808i)3-s − 1.52·4-s + (0.316 + 0.316i)5-s + (−0.128 + 0.128i)6-s + (−0.505 + 0.505i)7-s − 0.840i·8-s − 0.986i·9-s + (−0.502 + 0.502i)10-s + (0.752 − 0.752i)11-s + (−0.123 − 0.123i)12-s + 0.353·13-s + (−0.804 − 0.804i)14-s + 0.0511i·15-s − 0.191·16-s + (0.893 − 0.449i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.831i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.455219 + 0.850894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.455219 + 0.850894i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 + (-3.68 + 1.85i)T \) |
good | 2 | \( 1 - 2.24iT - 2T^{2} \) |
| 3 | \( 1 + (-0.140 - 0.140i)T + 3iT^{2} \) |
| 7 | \( 1 + (1.33 - 1.33i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.49 + 2.49i)T - 11iT^{2} \) |
| 13 | \( 1 - 1.27T + 13T^{2} \) |
| 19 | \( 1 - 4.69iT - 19T^{2} \) |
| 23 | \( 1 + (0.406 - 0.406i)T - 23iT^{2} \) |
| 29 | \( 1 + (3.81 + 3.81i)T + 29iT^{2} \) |
| 31 | \( 1 + (4.39 + 4.39i)T + 31iT^{2} \) |
| 37 | \( 1 + (6.00 + 6.00i)T + 37iT^{2} \) |
| 41 | \( 1 + (-4.28 + 4.28i)T - 41iT^{2} \) |
| 43 | \( 1 - 9.16iT - 43T^{2} \) |
| 47 | \( 1 + 10.7T + 47T^{2} \) |
| 53 | \( 1 - 9.90iT - 53T^{2} \) |
| 59 | \( 1 + 3.15iT - 59T^{2} \) |
| 61 | \( 1 + (-3.63 + 3.63i)T - 61iT^{2} \) |
| 67 | \( 1 - 0.281T + 67T^{2} \) |
| 71 | \( 1 + (-8.30 - 8.30i)T + 71iT^{2} \) |
| 73 | \( 1 + (6.95 + 6.95i)T + 73iT^{2} \) |
| 79 | \( 1 + (11.9 - 11.9i)T - 79iT^{2} \) |
| 83 | \( 1 + 8.51iT - 83T^{2} \) |
| 89 | \( 1 - 16.7T + 89T^{2} \) |
| 97 | \( 1 + (-4.18 - 4.18i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.59886818189503971948449032541, −14.16117029953212118205610137146, −12.78935191367448227725970528052, −11.49293214487380896386005106896, −9.667232198446189310379683317373, −8.923037312722369323549587128884, −7.61688778401767606367818055690, −6.27695410600013780578984949399, −5.76746245040159108427279443433, −3.65478180832305816676565542493,
1.72159546765021364890788823991, 3.49846203655660322102939909596, 4.93930993355297741718235138730, 6.98930709301607896283576420082, 8.728840947363590486272844720893, 9.834548425445656584725412255905, 10.60198226342928933452582881444, 11.70171166836390207083393930393, 12.81336800667848182933701896683, 13.38285570266283241870087568545