Properties

Label 2-84e2-1.1-c1-0-71
Degree $2$
Conductor $7056$
Sign $-1$
Analytic cond. $56.3424$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3·11-s − 4·13-s − 4·19-s + 8·23-s − 4·25-s + 3·29-s − 5·31-s + 8·37-s + 8·41-s − 6·43-s − 10·47-s − 9·53-s − 3·55-s + 5·59-s + 10·61-s + 4·65-s − 6·67-s + 10·71-s − 2·73-s − 11·79-s − 7·83-s − 18·89-s + 4·95-s + 17·97-s − 2·101-s − 11·107-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.904·11-s − 1.10·13-s − 0.917·19-s + 1.66·23-s − 4/5·25-s + 0.557·29-s − 0.898·31-s + 1.31·37-s + 1.24·41-s − 0.914·43-s − 1.45·47-s − 1.23·53-s − 0.404·55-s + 0.650·59-s + 1.28·61-s + 0.496·65-s − 0.733·67-s + 1.18·71-s − 0.234·73-s − 1.23·79-s − 0.768·83-s − 1.90·89-s + 0.410·95-s + 1.72·97-s − 0.199·101-s − 1.06·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7056\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(56.3424\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7056} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 5 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 + 7 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 - 17 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56076908853356247064777994001, −6.89942001807460238836204651480, −6.34993389183869891336615930653, −5.40799828156205258702048385385, −4.63806133539317617253099825366, −4.06254750069350404783423822224, −3.16044177682046176163230012552, −2.32196240883111084663704084666, −1.25043043818598602493918707954, 0, 1.25043043818598602493918707954, 2.32196240883111084663704084666, 3.16044177682046176163230012552, 4.06254750069350404783423822224, 4.63806133539317617253099825366, 5.40799828156205258702048385385, 6.34993389183869891336615930653, 6.89942001807460238836204651480, 7.56076908853356247064777994001

Graph of the $Z$-function along the critical line