L(s) = 1 | − 2·5-s + 4·11-s + 2·13-s + 2·17-s − 4·19-s − 8·23-s − 25-s − 6·29-s + 8·31-s + 6·37-s − 6·41-s − 4·43-s + 2·53-s − 8·55-s − 4·59-s + 2·61-s − 4·65-s + 4·67-s + 8·71-s − 10·73-s + 8·79-s + 4·83-s − 4·85-s − 6·89-s + 8·95-s − 2·97-s − 18·101-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.20·11-s + 0.554·13-s + 0.485·17-s − 0.917·19-s − 1.66·23-s − 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.986·37-s − 0.937·41-s − 0.609·43-s + 0.274·53-s − 1.07·55-s − 0.520·59-s + 0.256·61-s − 0.496·65-s + 0.488·67-s + 0.949·71-s − 1.17·73-s + 0.900·79-s + 0.439·83-s − 0.433·85-s − 0.635·89-s + 0.820·95-s − 0.203·97-s − 1.79·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.82263580546813636934054242173, −6.78395093605661555810316280628, −6.30966811163732211212778691110, −5.58667709375314371155679753614, −4.44811958782670156328485077225, −3.97597569667552498946447381576, −3.42103471864385914094720232253, −2.20947719434785265756306128762, −1.24950065754749508798543005172, 0,
1.24950065754749508798543005172, 2.20947719434785265756306128762, 3.42103471864385914094720232253, 3.97597569667552498946447381576, 4.44811958782670156328485077225, 5.58667709375314371155679753614, 6.30966811163732211212778691110, 6.78395093605661555810316280628, 7.82263580546813636934054242173