L(s) = 1 | − 4·5-s − 2·17-s − 2·19-s + 8·23-s + 11·25-s − 2·29-s + 4·31-s − 6·37-s − 2·41-s − 8·43-s + 4·47-s + 10·53-s − 6·59-s − 4·61-s + 12·67-s + 14·73-s + 8·79-s − 6·83-s + 8·85-s + 10·89-s + 8·95-s + 2·97-s + 12·101-s − 12·103-s − 12·107-s + 10·109-s − 6·113-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 0.485·17-s − 0.458·19-s + 1.66·23-s + 11/5·25-s − 0.371·29-s + 0.718·31-s − 0.986·37-s − 0.312·41-s − 1.21·43-s + 0.583·47-s + 1.37·53-s − 0.781·59-s − 0.512·61-s + 1.46·67-s + 1.63·73-s + 0.900·79-s − 0.658·83-s + 0.867·85-s + 1.05·89-s + 0.820·95-s + 0.203·97-s + 1.19·101-s − 1.18·103-s − 1.16·107-s + 0.957·109-s − 0.564·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 + 6 T + p T^{2} \) |
| 61 | \( 1 + 4 T + p T^{2} \) |
| 67 | \( 1 - 12 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.58028626270520696649741407666, −6.96697866536475375893625237684, −6.48033933151697843502675981340, −5.19459451107974603578328200690, −4.73247690983758697231526566319, −3.86396283353620397101485600351, −3.37079911116950031942239105021, −2.42039669908436992478027344666, −1.04001144089587954483115872500, 0,
1.04001144089587954483115872500, 2.42039669908436992478027344666, 3.37079911116950031942239105021, 3.86396283353620397101485600351, 4.73247690983758697231526566319, 5.19459451107974603578328200690, 6.48033933151697843502675981340, 6.96697866536475375893625237684, 7.58028626270520696649741407666