Properties

Label 2-84e2-1.1-c1-0-27
Degree $2$
Conductor $7056$
Sign $1$
Analytic cond. $56.3424$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 3·11-s − 6·13-s + 5·17-s − 19-s − 7·23-s − 4·25-s − 2·29-s + 5·31-s + 3·37-s + 2·41-s + 4·43-s + 5·47-s + 53-s + 3·55-s + 15·59-s − 5·61-s − 6·65-s + 9·67-s + 7·73-s − 79-s + 12·83-s + 5·85-s − 7·89-s − 95-s − 2·97-s − 3·101-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.904·11-s − 1.66·13-s + 1.21·17-s − 0.229·19-s − 1.45·23-s − 4/5·25-s − 0.371·29-s + 0.898·31-s + 0.493·37-s + 0.312·41-s + 0.609·43-s + 0.729·47-s + 0.137·53-s + 0.404·55-s + 1.95·59-s − 0.640·61-s − 0.744·65-s + 1.09·67-s + 0.819·73-s − 0.112·79-s + 1.31·83-s + 0.542·85-s − 0.741·89-s − 0.102·95-s − 0.203·97-s − 0.298·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7056\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(56.3424\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7056} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.056012954\)
\(L(\frac12)\) \(\approx\) \(2.056012954\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 5 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 - 15 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 9 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 7 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80938945161247491825763012745, −7.35985502139519586381952817992, −6.46749185565806654852829644076, −5.85480315263226514984617937653, −5.19716917776365216970698814465, −4.30031124746519077999263005678, −3.66938576158705372020834388933, −2.54985724314154952520724050951, −1.93327733778023307163773954158, −0.72268694847289270306452538024, 0.72268694847289270306452538024, 1.93327733778023307163773954158, 2.54985724314154952520724050951, 3.66938576158705372020834388933, 4.30031124746519077999263005678, 5.19716917776365216970698814465, 5.85480315263226514984617937653, 6.46749185565806654852829644076, 7.35985502139519586381952817992, 7.80938945161247491825763012745

Graph of the $Z$-function along the critical line