Properties

Label 2-8470-1.1-c1-0-86
Degree $2$
Conductor $8470$
Sign $1$
Analytic cond. $67.6332$
Root an. cond. $8.22394$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s − 2·9-s − 10-s + 12-s + 5·13-s − 14-s + 15-s + 16-s + 2·18-s + 5·19-s + 20-s + 21-s + 9·23-s − 24-s + 25-s − 5·26-s − 5·27-s + 28-s − 6·29-s − 30-s + 8·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.288·12-s + 1.38·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.471·18-s + 1.14·19-s + 0.223·20-s + 0.218·21-s + 1.87·23-s − 0.204·24-s + 1/5·25-s − 0.980·26-s − 0.962·27-s + 0.188·28-s − 1.11·29-s − 0.182·30-s + 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8470\)    =    \(2 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(67.6332\)
Root analytic conductor: \(8.22394\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{8470} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8470,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.407659174\)
\(L(\frac12)\) \(\approx\) \(2.407659174\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 13 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.978062143444101358885744521321, −7.26806416985595198145495430196, −6.49256694829097506387297488134, −5.77731833118557149105886673635, −5.20641496397529709615913146333, −4.12205827907315872846461654017, −3.13325972512981293431358301253, −2.73590226829810721728652383455, −1.59042127408644996677510922764, −0.886147682868866137306656548516, 0.886147682868866137306656548516, 1.59042127408644996677510922764, 2.73590226829810721728652383455, 3.13325972512981293431358301253, 4.12205827907315872846461654017, 5.20641496397529709615913146333, 5.77731833118557149105886673635, 6.49256694829097506387297488134, 7.26806416985595198145495430196, 7.978062143444101358885744521321

Graph of the $Z$-function along the critical line