Properties

Label 2-8470-1.1-c1-0-78
Degree $2$
Conductor $8470$
Sign $1$
Analytic cond. $67.6332$
Root an. cond. $8.22394$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 7-s + 8-s − 3·9-s + 10-s + 6·13-s − 14-s + 16-s + 2·17-s − 3·18-s + 4·19-s + 20-s − 4·23-s + 25-s + 6·26-s − 28-s − 6·29-s + 32-s + 2·34-s − 35-s − 3·36-s − 2·37-s + 4·38-s + 40-s + 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s + 0.353·8-s − 9-s + 0.316·10-s + 1.66·13-s − 0.267·14-s + 1/4·16-s + 0.485·17-s − 0.707·18-s + 0.917·19-s + 0.223·20-s − 0.834·23-s + 1/5·25-s + 1.17·26-s − 0.188·28-s − 1.11·29-s + 0.176·32-s + 0.342·34-s − 0.169·35-s − 1/2·36-s − 0.328·37-s + 0.648·38-s + 0.158·40-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8470\)    =    \(2 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(67.6332\)
Root analytic conductor: \(8.22394\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{8470} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8470,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.595786744\)
\(L(\frac12)\) \(\approx\) \(3.595786744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78756367385159341430981998936, −6.92083137647374604242018824744, −6.12961997921981853635910763631, −5.74392610329482960040574163447, −5.26964949099340810286657963874, −4.06253115986344144512606759561, −3.54212688670020728693570411453, −2.82968211807009410797264506076, −1.90897112784761245945570013279, −0.844515960079188780436889620071, 0.844515960079188780436889620071, 1.90897112784761245945570013279, 2.82968211807009410797264506076, 3.54212688670020728693570411453, 4.06253115986344144512606759561, 5.26964949099340810286657963874, 5.74392610329482960040574163447, 6.12961997921981853635910763631, 6.92083137647374604242018824744, 7.78756367385159341430981998936

Graph of the $Z$-function along the critical line