Properties

Label 2-8470-1.1-c1-0-44
Degree $2$
Conductor $8470$
Sign $1$
Analytic cond. $67.6332$
Root an. cond. $8.22394$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 0.732·3-s + 4-s + 5-s − 0.732·6-s − 7-s + 8-s − 2.46·9-s + 10-s − 0.732·12-s − 5.46·13-s − 14-s − 0.732·15-s + 16-s + 3.46·17-s − 2.46·18-s − 0.732·19-s + 20-s + 0.732·21-s + 4.73·23-s − 0.732·24-s + 25-s − 5.46·26-s + 4·27-s − 28-s + 1.26·29-s − 0.732·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.422·3-s + 0.5·4-s + 0.447·5-s − 0.298·6-s − 0.377·7-s + 0.353·8-s − 0.821·9-s + 0.316·10-s − 0.211·12-s − 1.51·13-s − 0.267·14-s − 0.189·15-s + 0.250·16-s + 0.840·17-s − 0.580·18-s − 0.167·19-s + 0.223·20-s + 0.159·21-s + 0.986·23-s − 0.149·24-s + 0.200·25-s − 1.07·26-s + 0.769·27-s − 0.188·28-s + 0.235·29-s − 0.133·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8470\)    =    \(2 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(67.6332\)
Root analytic conductor: \(8.22394\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{8470} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8470,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.301690419\)
\(L(\frac12)\) \(\approx\) \(2.301690419\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 0.732T + 3T^{2} \)
13 \( 1 + 5.46T + 13T^{2} \)
17 \( 1 - 3.46T + 17T^{2} \)
19 \( 1 + 0.732T + 19T^{2} \)
23 \( 1 - 4.73T + 23T^{2} \)
29 \( 1 - 1.26T + 29T^{2} \)
31 \( 1 + 4.92T + 31T^{2} \)
37 \( 1 - 6.73T + 37T^{2} \)
41 \( 1 - 1.26T + 41T^{2} \)
43 \( 1 + 8.92T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 1.26T + 53T^{2} \)
59 \( 1 - 13.8T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 - 2.92T + 67T^{2} \)
71 \( 1 - 2.53T + 71T^{2} \)
73 \( 1 + 4.53T + 73T^{2} \)
79 \( 1 + 3.26T + 79T^{2} \)
83 \( 1 + 16.3T + 83T^{2} \)
89 \( 1 + 8.53T + 89T^{2} \)
97 \( 1 - 16.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51602062909253101135901703858, −7.00521354998952660543979866252, −6.26015855164109240790167232095, −5.59995393517683811258942768870, −5.13176064360016745125757565234, −4.46786232377923946802825920134, −3.33941431028547672236942299646, −2.80843255119649005781846290588, −1.98340969892397530451168068999, −0.65572315744355252589267526058, 0.65572315744355252589267526058, 1.98340969892397530451168068999, 2.80843255119649005781846290588, 3.33941431028547672236942299646, 4.46786232377923946802825920134, 5.13176064360016745125757565234, 5.59995393517683811258942768870, 6.26015855164109240790167232095, 7.00521354998952660543979866252, 7.51602062909253101135901703858

Graph of the $Z$-function along the critical line