Properties

Label 2-8470-1.1-c1-0-104
Degree $2$
Conductor $8470$
Sign $-1$
Analytic cond. $67.6332$
Root an. cond. $8.22394$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s + 7-s − 8-s − 2·9-s + 10-s − 12-s − 13-s − 14-s + 15-s + 16-s − 4·17-s + 2·18-s + 3·19-s − 20-s − 21-s − 3·23-s + 24-s + 25-s + 26-s + 5·27-s + 28-s − 2·29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.471·18-s + 0.688·19-s − 0.223·20-s − 0.218·21-s − 0.625·23-s + 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.962·27-s + 0.188·28-s − 0.371·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8470\)    =    \(2 \cdot 5 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(67.6332\)
Root analytic conductor: \(8.22394\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{8470} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 \)
good3 \( 1 + T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 17 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43977838426418509677024959461, −6.91362110222841085867832420609, −6.06632732212645623957778244129, −5.52277834404263372287665020364, −4.69366028765107046417484787869, −3.92300220466333541478680720281, −2.88512048103752100830034071054, −2.14911084296292626797635585340, −0.958879211022868015863565762622, 0, 0.958879211022868015863565762622, 2.14911084296292626797635585340, 2.88512048103752100830034071054, 3.92300220466333541478680720281, 4.69366028765107046417484787869, 5.52277834404263372287665020364, 6.06632732212645623957778244129, 6.91362110222841085867832420609, 7.43977838426418509677024959461

Graph of the $Z$-function along the critical line