Properties

Label 2-847-1.1-c3-0-48
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $49.9746$
Root an. cond. $7.06927$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s − 7·4-s + 16·5-s − 2·6-s + 7·7-s − 15·8-s − 23·9-s + 16·10-s + 14·12-s − 28·13-s + 7·14-s − 32·15-s + 41·16-s − 54·17-s − 23·18-s + 110·19-s − 112·20-s − 14·21-s + 48·23-s + 30·24-s + 131·25-s − 28·26-s + 100·27-s − 49·28-s + 110·29-s − 32·30-s + ⋯
L(s)  = 1  + 0.353·2-s − 0.384·3-s − 7/8·4-s + 1.43·5-s − 0.136·6-s + 0.377·7-s − 0.662·8-s − 0.851·9-s + 0.505·10-s + 0.336·12-s − 0.597·13-s + 0.133·14-s − 0.550·15-s + 0.640·16-s − 0.770·17-s − 0.301·18-s + 1.32·19-s − 1.25·20-s − 0.145·21-s + 0.435·23-s + 0.255·24-s + 1.04·25-s − 0.211·26-s + 0.712·27-s − 0.330·28-s + 0.704·29-s − 0.194·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(49.9746\)
Root analytic conductor: \(7.06927\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.963696696\)
\(L(\frac12)\) \(\approx\) \(1.963696696\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - p T \)
11 \( 1 \)
good2 \( 1 - T + p^{3} T^{2} \)
3 \( 1 + 2 T + p^{3} T^{2} \)
5 \( 1 - 16 T + p^{3} T^{2} \)
13 \( 1 + 28 T + p^{3} T^{2} \)
17 \( 1 + 54 T + p^{3} T^{2} \)
19 \( 1 - 110 T + p^{3} T^{2} \)
23 \( 1 - 48 T + p^{3} T^{2} \)
29 \( 1 - 110 T + p^{3} T^{2} \)
31 \( 1 - 12 T + p^{3} T^{2} \)
37 \( 1 + 246 T + p^{3} T^{2} \)
41 \( 1 + 182 T + p^{3} T^{2} \)
43 \( 1 + 128 T + p^{3} T^{2} \)
47 \( 1 - 324 T + p^{3} T^{2} \)
53 \( 1 + 162 T + p^{3} T^{2} \)
59 \( 1 - 810 T + p^{3} T^{2} \)
61 \( 1 - 8 p T + p^{3} T^{2} \)
67 \( 1 - 244 T + p^{3} T^{2} \)
71 \( 1 + 768 T + p^{3} T^{2} \)
73 \( 1 - 702 T + p^{3} T^{2} \)
79 \( 1 + 440 T + p^{3} T^{2} \)
83 \( 1 - 1302 T + p^{3} T^{2} \)
89 \( 1 - 730 T + p^{3} T^{2} \)
97 \( 1 - 294 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.787081795200737663507816397655, −9.028228598826557838607406890545, −8.377770933314236780038474866280, −7.01147939019497066438910267258, −6.01365907896678875018612017917, −5.28285927970685486895338944527, −4.83481037533302843201193190111, −3.31918745569909271743506679309, −2.21345251215478291384990864744, −0.75316267854140113947099853893, 0.75316267854140113947099853893, 2.21345251215478291384990864744, 3.31918745569909271743506679309, 4.83481037533302843201193190111, 5.28285927970685486895338944527, 6.01365907896678875018612017917, 7.01147939019497066438910267258, 8.377770933314236780038474866280, 9.028228598826557838607406890545, 9.787081795200737663507816397655

Graph of the $Z$-function along the critical line