Properties

Label 2-847-1.1-c1-0-48
Degree $2$
Conductor $847$
Sign $-1$
Analytic cond. $6.76332$
Root an. cond. $2.60064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.12·2-s − 3.12·3-s + 2.51·4-s + 0.484·5-s − 6.64·6-s − 7-s + 1.09·8-s + 6.76·9-s + 1.03·10-s − 7.85·12-s − 5.60·13-s − 2.12·14-s − 1.51·15-s − 2.70·16-s − 5.60·17-s + 14.3·18-s + 5.28·19-s + 1.21·20-s + 3.12·21-s + 2.48·23-s − 3.42·24-s − 4.76·25-s − 11.9·26-s − 11.7·27-s − 2.51·28-s − 5.28·29-s − 3.21·30-s + ⋯
L(s)  = 1  + 1.50·2-s − 1.80·3-s + 1.25·4-s + 0.216·5-s − 2.71·6-s − 0.377·7-s + 0.387·8-s + 2.25·9-s + 0.325·10-s − 2.26·12-s − 1.55·13-s − 0.567·14-s − 0.391·15-s − 0.676·16-s − 1.36·17-s + 3.38·18-s + 1.21·19-s + 0.272·20-s + 0.681·21-s + 0.518·23-s − 0.698·24-s − 0.952·25-s − 2.33·26-s − 2.26·27-s − 0.475·28-s − 0.980·29-s − 0.587·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(6.76332\)
Root analytic conductor: \(2.60064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 847,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 - 2.12T + 2T^{2} \)
3 \( 1 + 3.12T + 3T^{2} \)
5 \( 1 - 0.484T + 5T^{2} \)
13 \( 1 + 5.60T + 13T^{2} \)
17 \( 1 + 5.60T + 17T^{2} \)
19 \( 1 - 5.28T + 19T^{2} \)
23 \( 1 - 2.48T + 23T^{2} \)
29 \( 1 + 5.28T + 29T^{2} \)
31 \( 1 + 7.12T + 31T^{2} \)
37 \( 1 + 0.235T + 37T^{2} \)
41 \( 1 + 2.39T + 41T^{2} \)
43 \( 1 + 1.03T + 43T^{2} \)
47 \( 1 + 1.60T + 47T^{2} \)
53 \( 1 + 3.03T + 53T^{2} \)
59 \( 1 - 3.12T + 59T^{2} \)
61 \( 1 - 2.39T + 61T^{2} \)
67 \( 1 - 10.0T + 67T^{2} \)
71 \( 1 - 12.0T + 71T^{2} \)
73 \( 1 + 2.39T + 73T^{2} \)
79 \( 1 + 9.03T + 79T^{2} \)
83 \( 1 - 3.21T + 83T^{2} \)
89 \( 1 + 1.26T + 89T^{2} \)
97 \( 1 + 8.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.991649855514483384921005940984, −9.323969163944463819598812375727, −7.32708875773608493986839165494, −6.84785483325004550285318440340, −5.92419631713016693379617853779, −5.26173842224527021115874685524, −4.72407829068804524491932456627, −3.66764501922848674944150779463, −2.14632884657505271210767399285, 0, 2.14632884657505271210767399285, 3.66764501922848674944150779463, 4.72407829068804524491932456627, 5.26173842224527021115874685524, 5.92419631713016693379617853779, 6.84785483325004550285318440340, 7.32708875773608493986839165494, 9.323969163944463819598812375727, 9.991649855514483384921005940984

Graph of the $Z$-function along the critical line