Properties

Label 2-847-1.1-c1-0-36
Degree $2$
Conductor $847$
Sign $-1$
Analytic cond. $6.76332$
Root an. cond. $2.60064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.36·2-s + 0.363·3-s − 0.141·4-s + 3.14·5-s − 0.495·6-s − 7-s + 2.91·8-s − 2.86·9-s − 4.28·10-s − 0.0513·12-s − 4.77·13-s + 1.36·14-s + 1.14·15-s − 3.69·16-s − 4.77·17-s + 3.91·18-s − 7.00·19-s − 0.443·20-s − 0.363·21-s + 5.14·23-s + 1.06·24-s + 4.86·25-s + 6.51·26-s − 2.13·27-s + 0.141·28-s + 7.00·29-s − 1.55·30-s + ⋯
L(s)  = 1  − 0.964·2-s + 0.209·3-s − 0.0706·4-s + 1.40·5-s − 0.202·6-s − 0.377·7-s + 1.03·8-s − 0.955·9-s − 1.35·10-s − 0.0148·12-s − 1.32·13-s + 0.364·14-s + 0.294·15-s − 0.924·16-s − 1.15·17-s + 0.921·18-s − 1.60·19-s − 0.0992·20-s − 0.0792·21-s + 1.07·23-s + 0.216·24-s + 0.973·25-s + 1.27·26-s − 0.410·27-s + 0.0267·28-s + 1.30·29-s − 0.284·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(6.76332\)
Root analytic conductor: \(2.60064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 847,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + 1.36T + 2T^{2} \)
3 \( 1 - 0.363T + 3T^{2} \)
5 \( 1 - 3.14T + 5T^{2} \)
13 \( 1 + 4.77T + 13T^{2} \)
17 \( 1 + 4.77T + 17T^{2} \)
19 \( 1 + 7.00T + 19T^{2} \)
23 \( 1 - 5.14T + 23T^{2} \)
29 \( 1 - 7.00T + 29T^{2} \)
31 \( 1 + 3.63T + 31T^{2} \)
37 \( 1 + 9.86T + 37T^{2} \)
41 \( 1 + 3.22T + 41T^{2} \)
43 \( 1 - 4.28T + 43T^{2} \)
47 \( 1 + 0.778T + 47T^{2} \)
53 \( 1 - 2.28T + 53T^{2} \)
59 \( 1 + 0.363T + 59T^{2} \)
61 \( 1 - 3.22T + 61T^{2} \)
67 \( 1 + 6.59T + 67T^{2} \)
71 \( 1 + 15.1T + 71T^{2} \)
73 \( 1 + 3.22T + 73T^{2} \)
79 \( 1 + 3.71T + 79T^{2} \)
83 \( 1 - 1.55T + 83T^{2} \)
89 \( 1 + 5.58T + 89T^{2} \)
97 \( 1 - 6.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.666964775228266956188397721734, −8.829655988538240971022437382686, −8.626730733833483058977127668330, −7.21368767281873072891819877104, −6.47134988274745794866535561096, −5.38532332212894613047907448626, −4.49830365428864379742761539316, −2.74035320139465276450702291961, −1.90596557038024625654926636672, 0, 1.90596557038024625654926636672, 2.74035320139465276450702291961, 4.49830365428864379742761539316, 5.38532332212894613047907448626, 6.47134988274745794866535561096, 7.21368767281873072891819877104, 8.626730733833483058977127668330, 8.829655988538240971022437382686, 9.666964775228266956188397721734

Graph of the $Z$-function along the critical line