| L(s) = 1 | − 1.36·2-s + 0.363·3-s − 0.141·4-s + 3.14·5-s − 0.495·6-s − 7-s + 2.91·8-s − 2.86·9-s − 4.28·10-s − 0.0513·12-s − 4.77·13-s + 1.36·14-s + 1.14·15-s − 3.69·16-s − 4.77·17-s + 3.91·18-s − 7.00·19-s − 0.443·20-s − 0.363·21-s + 5.14·23-s + 1.06·24-s + 4.86·25-s + 6.51·26-s − 2.13·27-s + 0.141·28-s + 7.00·29-s − 1.55·30-s + ⋯ |
| L(s) = 1 | − 0.964·2-s + 0.209·3-s − 0.0706·4-s + 1.40·5-s − 0.202·6-s − 0.377·7-s + 1.03·8-s − 0.955·9-s − 1.35·10-s − 0.0148·12-s − 1.32·13-s + 0.364·14-s + 0.294·15-s − 0.924·16-s − 1.15·17-s + 0.921·18-s − 1.60·19-s − 0.0992·20-s − 0.0792·21-s + 1.07·23-s + 0.216·24-s + 0.973·25-s + 1.27·26-s − 0.410·27-s + 0.0267·28-s + 1.30·29-s − 0.284·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + T \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + 1.36T + 2T^{2} \) |
| 3 | \( 1 - 0.363T + 3T^{2} \) |
| 5 | \( 1 - 3.14T + 5T^{2} \) |
| 13 | \( 1 + 4.77T + 13T^{2} \) |
| 17 | \( 1 + 4.77T + 17T^{2} \) |
| 19 | \( 1 + 7.00T + 19T^{2} \) |
| 23 | \( 1 - 5.14T + 23T^{2} \) |
| 29 | \( 1 - 7.00T + 29T^{2} \) |
| 31 | \( 1 + 3.63T + 31T^{2} \) |
| 37 | \( 1 + 9.86T + 37T^{2} \) |
| 41 | \( 1 + 3.22T + 41T^{2} \) |
| 43 | \( 1 - 4.28T + 43T^{2} \) |
| 47 | \( 1 + 0.778T + 47T^{2} \) |
| 53 | \( 1 - 2.28T + 53T^{2} \) |
| 59 | \( 1 + 0.363T + 59T^{2} \) |
| 61 | \( 1 - 3.22T + 61T^{2} \) |
| 67 | \( 1 + 6.59T + 67T^{2} \) |
| 71 | \( 1 + 15.1T + 71T^{2} \) |
| 73 | \( 1 + 3.22T + 73T^{2} \) |
| 79 | \( 1 + 3.71T + 79T^{2} \) |
| 83 | \( 1 - 1.55T + 83T^{2} \) |
| 89 | \( 1 + 5.58T + 89T^{2} \) |
| 97 | \( 1 - 6.15T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.666964775228266956188397721734, −8.829655988538240971022437382686, −8.626730733833483058977127668330, −7.21368767281873072891819877104, −6.47134988274745794866535561096, −5.38532332212894613047907448626, −4.49830365428864379742761539316, −2.74035320139465276450702291961, −1.90596557038024625654926636672, 0,
1.90596557038024625654926636672, 2.74035320139465276450702291961, 4.49830365428864379742761539316, 5.38532332212894613047907448626, 6.47134988274745794866535561096, 7.21368767281873072891819877104, 8.626730733833483058977127668330, 8.829655988538240971022437382686, 9.666964775228266956188397721734