Properties

Label 2-8450-1.1-c1-0-14
Degree $2$
Conductor $8450$
Sign $1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s − 2·12-s + 16-s − 6·17-s − 18-s + 2·24-s + 4·27-s + 6·29-s − 6·31-s − 32-s + 6·34-s + 36-s − 6·37-s − 10·43-s + 12·47-s − 2·48-s − 7·49-s + 12·51-s − 4·54-s − 6·58-s − 12·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.577·12-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.408·24-s + 0.769·27-s + 1.11·29-s − 1.07·31-s − 0.176·32-s + 1.02·34-s + 1/6·36-s − 0.986·37-s − 1.52·43-s + 1.75·47-s − 0.288·48-s − 49-s + 1.68·51-s − 0.544·54-s − 0.787·58-s − 1.56·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4330084323\)
\(L(\frac12)\) \(\approx\) \(0.4330084323\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75613950210011250344406542843, −6.90184759671754926414253538065, −6.55889408141557873194856992059, −5.84693920213512216759559897487, −5.10241202684064360607024042961, −4.48052475065147540071218448359, −3.43176869510151927907729223598, −2.44360615240306294039830653198, −1.52099788743189649539218248765, −0.38606949228854182018999113161, 0.38606949228854182018999113161, 1.52099788743189649539218248765, 2.44360615240306294039830653198, 3.43176869510151927907729223598, 4.48052475065147540071218448359, 5.10241202684064360607024042961, 5.84693920213512216759559897487, 6.55889408141557873194856992059, 6.90184759671754926414253538065, 7.75613950210011250344406542843

Graph of the $Z$-function along the critical line