Properties

Label 2-845-845.392-c1-0-25
Degree $2$
Conductor $845$
Sign $-0.972 - 0.233i$
Analytic cond. $6.74735$
Root an. cond. $2.59756$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.876 + 1.84i)2-s + (2.05 + 1.89i)3-s + (−1.37 − 1.68i)4-s + (0.914 − 2.04i)5-s + (−5.30 + 2.13i)6-s + (1.58 + 0.459i)7-s + (0.359 − 0.0886i)8-s + (0.388 + 4.81i)9-s + (2.96 + 3.47i)10-s + (−1.42 − 1.68i)11-s + (0.368 − 6.09i)12-s + (−0.533 + 3.56i)13-s + (−2.24 + 2.52i)14-s + (5.75 − 2.45i)15-s + (0.721 − 3.53i)16-s + (3.76 + 6.83i)17-s + ⋯
L(s)  = 1  + (−0.619 + 1.30i)2-s + (1.18 + 1.09i)3-s + (−0.689 − 0.844i)4-s + (0.409 − 0.912i)5-s + (−2.16 + 0.871i)6-s + (0.599 + 0.173i)7-s + (0.127 − 0.0313i)8-s + (0.129 + 1.60i)9-s + (0.938 + 1.10i)10-s + (−0.430 − 0.506i)11-s + (0.106 − 1.75i)12-s + (−0.147 + 0.988i)13-s + (−0.598 + 0.675i)14-s + (1.48 − 0.635i)15-s + (0.180 − 0.882i)16-s + (0.913 + 1.65i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 - 0.233i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.972 - 0.233i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(845\)    =    \(5 \cdot 13^{2}\)
Sign: $-0.972 - 0.233i$
Analytic conductor: \(6.74735\)
Root analytic conductor: \(2.59756\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{845} (392, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 845,\ (\ :1/2),\ -0.972 - 0.233i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.207232 + 1.74669i\)
\(L(\frac12)\) \(\approx\) \(0.207232 + 1.74669i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.914 + 2.04i)T \)
13 \( 1 + (0.533 - 3.56i)T \)
good2 \( 1 + (0.876 - 1.84i)T + (-1.26 - 1.54i)T^{2} \)
3 \( 1 + (-2.05 - 1.89i)T + (0.241 + 2.99i)T^{2} \)
7 \( 1 + (-1.58 - 0.459i)T + (5.91 + 3.74i)T^{2} \)
11 \( 1 + (1.42 + 1.68i)T + (-1.76 + 10.8i)T^{2} \)
17 \( 1 + (-3.76 - 6.83i)T + (-9.08 + 14.3i)T^{2} \)
19 \( 1 + (-0.970 + 0.260i)T + (16.4 - 9.5i)T^{2} \)
23 \( 1 + (1.42 - 5.32i)T + (-19.9 - 11.5i)T^{2} \)
29 \( 1 + (2.02 + 0.960i)T + (18.3 + 22.4i)T^{2} \)
31 \( 1 + (-0.00397 - 0.00311i)T + (7.41 + 30.0i)T^{2} \)
37 \( 1 + (0.591 + 0.787i)T + (-10.2 + 35.5i)T^{2} \)
41 \( 1 + (-1.76 - 1.62i)T + (3.29 + 40.8i)T^{2} \)
43 \( 1 + (-0.999 - 7.04i)T + (-41.3 + 11.9i)T^{2} \)
47 \( 1 + (-0.689 + 0.261i)T + (35.1 - 31.1i)T^{2} \)
53 \( 1 + (3.03 - 5.02i)T + (-24.6 - 46.9i)T^{2} \)
59 \( 1 + (0.790 + 0.522i)T + (23.1 + 54.2i)T^{2} \)
61 \( 1 + (-9.22 + 9.60i)T + (-2.45 - 60.9i)T^{2} \)
67 \( 1 + (-3.19 + 3.91i)T + (-13.4 - 65.6i)T^{2} \)
71 \( 1 + (-0.0801 + 0.356i)T + (-64.1 - 30.4i)T^{2} \)
73 \( 1 + (-3.64 + 5.28i)T + (-25.8 - 68.2i)T^{2} \)
79 \( 1 + (-8.35 + 3.16i)T + (59.1 - 52.3i)T^{2} \)
83 \( 1 + (6.38 + 12.1i)T + (-47.1 + 68.3i)T^{2} \)
89 \( 1 + (-1.09 - 0.293i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (-14.7 + 4.92i)T + (77.5 - 58.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.906150296863167964680660652267, −9.501390414044782060771768180244, −8.738371650550756327557928287012, −8.164077610862770041921641533634, −7.69973302415578388457220503767, −6.16501748799965351213941852995, −5.38422297667135808912021073369, −4.49788121027974501129292794071, −3.39803389916223757881196158956, −1.81094567541662160179107737888, 0.960349546674912580088330080690, 2.24893032975519566601356182109, 2.68252776827949337721347527974, 3.57659817321304466896412134758, 5.34980462006207341880970740143, 6.75299469019979830820952594013, 7.55658957402794978030219513366, 8.117340620759471222300383140277, 9.115163621652285290483646274101, 9.904405961378470749812982835601

Graph of the $Z$-function along the critical line