L(s) = 1 | + (−0.113 − 0.0656i)2-s + (−0.0890 − 0.332i)3-s + (−0.991 − 1.71i)4-s + (−2.08 − 0.813i)5-s + (−0.0116 + 0.0436i)6-s + (−1.39 − 2.40i)7-s + 0.522i·8-s + (2.49 − 1.44i)9-s + (0.183 + 0.229i)10-s + (−1.04 − 3.91i)11-s + (−0.482 + 0.482i)12-s + 0.365i·14-s + (−0.0847 + 0.764i)15-s + (−1.94 + 3.37i)16-s + (2.34 + 0.627i)17-s − 0.378·18-s + ⋯ |
L(s) = 1 | + (−0.0804 − 0.0464i)2-s + (−0.0513 − 0.191i)3-s + (−0.495 − 0.858i)4-s + (−0.931 − 0.363i)5-s + (−0.00477 + 0.0178i)6-s + (−0.525 − 0.910i)7-s + 0.184i·8-s + (0.831 − 0.480i)9-s + (0.0580 + 0.0724i)10-s + (−0.316 − 1.18i)11-s + (−0.139 + 0.139i)12-s + 0.0976i·14-s + (−0.0218 + 0.197i)15-s + (−0.487 + 0.843i)16-s + (0.567 + 0.152i)17-s − 0.0891·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.847 - 0.530i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.847 - 0.530i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.143347 + 0.499454i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.143347 + 0.499454i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.08 + 0.813i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.113 + 0.0656i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.0890 + 0.332i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (1.39 + 2.40i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.04 + 3.91i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.34 - 0.627i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.83 - 0.491i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (7.70 - 2.06i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-3.96 - 2.28i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.87 + 3.87i)T + 31iT^{2} \) |
| 37 | \( 1 + (3.50 - 6.07i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (6.20 - 1.66i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.67 + 6.24i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 0.512T + 47T^{2} \) |
| 53 | \( 1 + (1.32 - 1.32i)T - 53iT^{2} \) |
| 59 | \( 1 + (-0.679 + 2.53i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.641 - 1.11i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.13 - 1.80i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.66 - 6.20i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 9.93iT - 73T^{2} \) |
| 79 | \( 1 + 8.37iT - 79T^{2} \) |
| 83 | \( 1 + 3.17T + 83T^{2} \) |
| 89 | \( 1 + (-6.01 + 1.61i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-10.1 + 5.88i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.949479471445969785366737453318, −8.832059385113340941147322292377, −8.038321928763751874030440521022, −7.15039414038876712199350579301, −6.20066916540710044304723409986, −5.24594346265161571205562153651, −4.08627462609593819639771872080, −3.49749773389497222016009400651, −1.31197314872825566391898586363, −0.29177821090063338201057890855,
2.32042357944865347761184731406, 3.45821622537722515980828979498, 4.32898786399189513349400169895, 5.16172626443092777875982525697, 6.61113012251247255659261611914, 7.51113693735981211105835855208, 7.969339384521973686021726227936, 9.000665252080827029168173470477, 9.831541859579686988260860740361, 10.50287249065268210449087569676