L(s) = 1 | + (−0.113 − 0.0656i)2-s + (−0.0890 − 0.332i)3-s + (−0.991 − 1.71i)4-s + (−2.08 − 0.813i)5-s + (−0.0116 + 0.0436i)6-s + (−1.39 − 2.40i)7-s + 0.522i·8-s + (2.49 − 1.44i)9-s + (0.183 + 0.229i)10-s + (−1.04 − 3.91i)11-s + (−0.482 + 0.482i)12-s + 0.365i·14-s + (−0.0847 + 0.764i)15-s + (−1.94 + 3.37i)16-s + (2.34 + 0.627i)17-s − 0.378·18-s + ⋯ |
L(s) = 1 | + (−0.0804 − 0.0464i)2-s + (−0.0513 − 0.191i)3-s + (−0.495 − 0.858i)4-s + (−0.931 − 0.363i)5-s + (−0.00477 + 0.0178i)6-s + (−0.525 − 0.910i)7-s + 0.184i·8-s + (0.831 − 0.480i)9-s + (0.0580 + 0.0724i)10-s + (−0.316 − 1.18i)11-s + (−0.139 + 0.139i)12-s + 0.0976i·14-s + (−0.0218 + 0.197i)15-s + (−0.487 + 0.843i)16-s + (0.567 + 0.152i)17-s − 0.0891·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.847−0.530i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.847−0.530i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.847−0.530i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(657,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.847−0.530i)
|
Particular Values
L(1) |
≈ |
0.143347+0.499454i |
L(21) |
≈ |
0.143347+0.499454i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.08+0.813i)T |
| 13 | 1 |
good | 2 | 1+(0.113+0.0656i)T+(1+1.73i)T2 |
| 3 | 1+(0.0890+0.332i)T+(−2.59+1.5i)T2 |
| 7 | 1+(1.39+2.40i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.04+3.91i)T+(−9.52+5.5i)T2 |
| 17 | 1+(−2.34−0.627i)T+(14.7+8.5i)T2 |
| 19 | 1+(−1.83−0.491i)T+(16.4+9.5i)T2 |
| 23 | 1+(7.70−2.06i)T+(19.9−11.5i)T2 |
| 29 | 1+(−3.96−2.28i)T+(14.5+25.1i)T2 |
| 31 | 1+(3.87+3.87i)T+31iT2 |
| 37 | 1+(3.50−6.07i)T+(−18.5−32.0i)T2 |
| 41 | 1+(6.20−1.66i)T+(35.5−20.5i)T2 |
| 43 | 1+(−1.67+6.24i)T+(−37.2−21.5i)T2 |
| 47 | 1−0.512T+47T2 |
| 53 | 1+(1.32−1.32i)T−53iT2 |
| 59 | 1+(−0.679+2.53i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−0.641−1.11i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.13−1.80i)T+(33.5+58.0i)T2 |
| 71 | 1+(1.66−6.20i)T+(−61.4−35.5i)T2 |
| 73 | 1−9.93iT−73T2 |
| 79 | 1+8.37iT−79T2 |
| 83 | 1+3.17T+83T2 |
| 89 | 1+(−6.01+1.61i)T+(77.0−44.5i)T2 |
| 97 | 1+(−10.1+5.88i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.949479471445969785366737453318, −8.832059385113340941147322292377, −8.038321928763751874030440521022, −7.15039414038876712199350579301, −6.20066916540710044304723409986, −5.24594346265161571205562153651, −4.08627462609593819639771872080, −3.49749773389497222016009400651, −1.31197314872825566391898586363, −0.29177821090063338201057890855,
2.32042357944865347761184731406, 3.45821622537722515980828979498, 4.32898786399189513349400169895, 5.16172626443092777875982525697, 6.61113012251247255659261611914, 7.51113693735981211105835855208, 7.969339384521973686021726227936, 9.000665252080827029168173470477, 9.831541859579686988260860740361, 10.50287249065268210449087569676