L(s) = 1 | + (−1.94 − 1.12i)2-s + (0.514 + 1.91i)3-s + (1.53 + 2.65i)4-s + (−0.247 + 2.22i)5-s + (1.15 − 4.31i)6-s + (−0.638 − 1.10i)7-s − 2.39i·8-s + (−0.820 + 0.473i)9-s + (2.98 − 4.05i)10-s + (−1.41 − 5.27i)11-s + (−4.30 + 4.30i)12-s + 2.87i·14-s + (−4.39 + 0.666i)15-s + (0.365 − 0.633i)16-s + (−3.11 − 0.833i)17-s + 2.13·18-s + ⋯ |
L(s) = 1 | + (−1.37 − 0.795i)2-s + (0.296 + 1.10i)3-s + (0.766 + 1.32i)4-s + (−0.110 + 0.993i)5-s + (0.472 − 1.76i)6-s + (−0.241 − 0.418i)7-s − 0.848i·8-s + (−0.273 + 0.157i)9-s + (0.943 − 1.28i)10-s + (−0.426 − 1.59i)11-s + (−1.24 + 1.24i)12-s + 0.768i·14-s + (−1.13 + 0.172i)15-s + (0.0913 − 0.158i)16-s + (−0.754 − 0.202i)17-s + 0.502·18-s + ⋯ |
Λ(s)=(=(845s/2ΓC(s)L(s)(−0.293+0.955i)Λ(2−s)
Λ(s)=(=(845s/2ΓC(s+1/2)L(s)(−0.293+0.955i)Λ(1−s)
Degree: |
2 |
Conductor: |
845
= 5⋅132
|
Sign: |
−0.293+0.955i
|
Analytic conductor: |
6.74735 |
Root analytic conductor: |
2.59756 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ845(657,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 845, ( :1/2), −0.293+0.955i)
|
Particular Values
L(1) |
≈ |
0.217193−0.293889i |
L(21) |
≈ |
0.217193−0.293889i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.247−2.22i)T |
| 13 | 1 |
good | 2 | 1+(1.94+1.12i)T+(1+1.73i)T2 |
| 3 | 1+(−0.514−1.91i)T+(−2.59+1.5i)T2 |
| 7 | 1+(0.638+1.10i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.41+5.27i)T+(−9.52+5.5i)T2 |
| 17 | 1+(3.11+0.833i)T+(14.7+8.5i)T2 |
| 19 | 1+(1.17+0.315i)T+(16.4+9.5i)T2 |
| 23 | 1+(0.160−0.0428i)T+(19.9−11.5i)T2 |
| 29 | 1+(8.41+4.85i)T+(14.5+25.1i)T2 |
| 31 | 1+(0.233+0.233i)T+31iT2 |
| 37 | 1+(−0.660+1.14i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−0.483+0.129i)T+(35.5−20.5i)T2 |
| 43 | 1+(−1.72+6.43i)T+(−37.2−21.5i)T2 |
| 47 | 1+3.20T+47T2 |
| 53 | 1+(−4.49+4.49i)T−53iT2 |
| 59 | 1+(−0.000595+0.00222i)T+(−51.0−29.5i)T2 |
| 61 | 1+(0.695+1.20i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.26−3.03i)T+(33.5+58.0i)T2 |
| 71 | 1+(−3.14+11.7i)T+(−61.4−35.5i)T2 |
| 73 | 1−7.34iT−73T2 |
| 79 | 1+11.1iT−79T2 |
| 83 | 1+2.65T+83T2 |
| 89 | 1+(6.96−1.86i)T+(77.0−44.5i)T2 |
| 97 | 1+(3.62−2.09i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01251702688155489218448275327, −9.299092363968461692270821388831, −8.586643420876632945907413585915, −7.74063486849168192149127964859, −6.77847173187448542775312695256, −5.54902641259005424173502733689, −3.94188682090598800179604077578, −3.29693331470196501464841157617, −2.30251834534769965002577652905, −0.27557898599933907614561398826,
1.37713461139747705644991336144, 2.21403134661476178188291967679, 4.32633115614740930470078915050, 5.52150594868061906355404120694, 6.58458989413385604479690669943, 7.30154697578829511933577890685, 7.86445385467574321835213280987, 8.632626364842660819250316688346, 9.325731565516576870870267198800, 9.973190533523095819997104061721