L(s) = 1 | + (−1.58 − 0.915i)2-s + (1.91 − 0.512i)3-s + (0.677 + 1.17i)4-s + (1.69 + 1.45i)5-s + (−3.50 − 0.939i)6-s + (1.76 + 3.06i)7-s + 1.18i·8-s + (0.803 − 0.463i)9-s + (−1.36 − 3.86i)10-s + (−3.74 + 1.00i)11-s + (1.89 + 1.89i)12-s − 6.48i·14-s + (3.99 + 1.91i)15-s + (2.43 − 4.22i)16-s + (−0.524 + 1.95i)17-s − 1.69·18-s + ⋯ |
L(s) = 1 | + (−1.12 − 0.647i)2-s + (1.10 − 0.296i)3-s + (0.338 + 0.586i)4-s + (0.759 + 0.650i)5-s + (−1.43 − 0.383i)6-s + (0.668 + 1.15i)7-s + 0.417i·8-s + (0.267 − 0.154i)9-s + (−0.430 − 1.22i)10-s + (−1.12 + 0.302i)11-s + (0.548 + 0.548i)12-s − 1.73i·14-s + (1.03 + 0.494i)15-s + (0.609 − 1.05i)16-s + (−0.127 + 0.474i)17-s − 0.400·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.851 - 0.523i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.851 - 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22895 + 0.347584i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22895 + 0.347584i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.69 - 1.45i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.58 + 0.915i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.91 + 0.512i)T + (2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-1.76 - 3.06i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.74 - 1.00i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (0.524 - 1.95i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.139 + 0.518i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.0788 + 0.294i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-1.71 - 0.988i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.13 - 4.13i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.70 + 4.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.174 - 0.649i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-8.51 - 2.28i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + 9.75T + 47T^{2} \) |
| 53 | \( 1 + (-3.16 - 3.16i)T + 53iT^{2} \) |
| 59 | \( 1 + (-11.7 - 3.14i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.44 - 2.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.98 + 1.14i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.46 + 1.19i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 14.7iT - 73T^{2} \) |
| 79 | \( 1 + 1.59iT - 79T^{2} \) |
| 83 | \( 1 - 7.57T + 83T^{2} \) |
| 89 | \( 1 + (-1.21 - 4.54i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-15.4 + 8.91i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19468967609923140447885734601, −9.227669281035982340793267457223, −8.802553062409282208904417909726, −8.015254528508575538502252166260, −7.35881034021701452257061666567, −5.87440373697325364717696175747, −5.08154423393561238569679262911, −3.08321452138816408287915723923, −2.34896420907734707760125727368, −1.81124811755786337625005788185,
0.78202258286069750546902579239, 2.26889023441531115661583985077, 3.67718330334952368975448560202, 4.74609962024195639579653752908, 5.90160403349277794072128335153, 7.13067014532073337970704141955, 7.923213358441146925355760423879, 8.348368281356304747805046868696, 9.145167622144313311158439701952, 9.880261727257276874000286191878