| L(s) = 1 | + 1.83·2-s + (−1.40 + 1.40i)3-s + 1.35·4-s + (1.45 + 1.69i)5-s + (−2.56 + 2.56i)6-s + 3.53i·7-s − 1.18·8-s − 0.927i·9-s + (2.66 + 3.11i)10-s + (−2.73 − 2.73i)11-s + (−1.89 + 1.89i)12-s + 6.48i·14-s + (−4.41 − 0.340i)15-s − 4.87·16-s + (1.43 − 1.43i)17-s − 1.69i·18-s + ⋯ |
| L(s) = 1 | + 1.29·2-s + (−0.809 + 0.809i)3-s + 0.677·4-s + (0.650 + 0.759i)5-s + (−1.04 + 1.04i)6-s + 1.33i·7-s − 0.417·8-s − 0.309i·9-s + (0.842 + 0.983i)10-s + (−0.825 − 0.825i)11-s + (−0.548 + 0.548i)12-s + 1.73i·14-s + (−1.14 − 0.0880i)15-s − 1.21·16-s + (0.347 − 0.347i)17-s − 0.400i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.823 - 0.566i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.823 - 0.566i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.564011 + 1.81417i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.564011 + 1.81417i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (-1.45 - 1.69i)T \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 - 1.83T + 2T^{2} \) |
| 3 | \( 1 + (1.40 - 1.40i)T - 3iT^{2} \) |
| 7 | \( 1 - 3.53iT - 7T^{2} \) |
| 11 | \( 1 + (2.73 + 2.73i)T + 11iT^{2} \) |
| 17 | \( 1 + (-1.43 + 1.43i)T - 17iT^{2} \) |
| 19 | \( 1 + (-0.379 - 0.379i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.215 - 0.215i)T + 23iT^{2} \) |
| 29 | \( 1 - 1.97iT - 29T^{2} \) |
| 31 | \( 1 + (-4.13 + 4.13i)T - 31iT^{2} \) |
| 37 | \( 1 - 5.41iT - 37T^{2} \) |
| 41 | \( 1 + (0.475 - 0.475i)T - 41iT^{2} \) |
| 43 | \( 1 + (-6.23 - 6.23i)T + 43iT^{2} \) |
| 47 | \( 1 - 9.75iT - 47T^{2} \) |
| 53 | \( 1 + (-3.16 + 3.16i)T - 53iT^{2} \) |
| 59 | \( 1 + (8.59 - 8.59i)T - 59iT^{2} \) |
| 61 | \( 1 + 2.88T + 61T^{2} \) |
| 67 | \( 1 - 2.28T + 67T^{2} \) |
| 71 | \( 1 + (3.26 - 3.26i)T - 71iT^{2} \) |
| 73 | \( 1 - 14.7T + 73T^{2} \) |
| 79 | \( 1 - 1.59iT - 79T^{2} \) |
| 83 | \( 1 - 7.57iT - 83T^{2} \) |
| 89 | \( 1 + (-3.32 + 3.32i)T - 89iT^{2} \) |
| 97 | \( 1 - 17.8T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80281553120380373866962913905, −9.840709090226788300227259647899, −9.112905739641439516461960952404, −7.912406311879357519316077546580, −6.41176109993559223511813439597, −5.79263736551601276492120361860, −5.38170580635047211558105690697, −4.51605843157704044167844062119, −3.14815668023792676703251790990, −2.51905980455438936025918314160,
0.64916717224313389081073270238, 2.07974022916678249273426651688, 3.67790424158164299568932773513, 4.66748915890117655397231218912, 5.33443037819133225819576748687, 6.17524345240041718586346519859, 6.95988227360251005333945378302, 7.76983522793911822656714315078, 9.073411345227824291064189882966, 10.10841066819790611761000239247