Properties

Label 2-845-65.49-c1-0-10
Degree $2$
Conductor $845$
Sign $0.310 - 0.950i$
Analytic cond. $6.74735$
Root an. cond. $2.59756$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−1.73 + i)3-s + (0.500 − 0.866i)4-s + (1 + 2i)5-s + (1.73 + 0.999i)6-s − 3·8-s + (0.499 − 0.866i)9-s + (1.23 − 1.86i)10-s + (1.73 − i)11-s + 2i·12-s + (−3.73 − 2.46i)15-s + (0.500 + 0.866i)16-s − 0.999·18-s + (5.19 + 3i)19-s + (2.23 + 0.133i)20-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.999 + 0.577i)3-s + (0.250 − 0.433i)4-s + (0.447 + 0.894i)5-s + (0.707 + 0.408i)6-s − 1.06·8-s + (0.166 − 0.288i)9-s + (0.389 − 0.590i)10-s + (0.522 − 0.301i)11-s + 0.577i·12-s + (−0.963 − 0.636i)15-s + (0.125 + 0.216i)16-s − 0.235·18-s + (1.19 + 0.688i)19-s + (0.499 + 0.0299i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.310 - 0.950i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.310 - 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(845\)    =    \(5 \cdot 13^{2}\)
Sign: $0.310 - 0.950i$
Analytic conductor: \(6.74735\)
Root analytic conductor: \(2.59756\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{845} (699, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 845,\ (\ :1/2),\ 0.310 - 0.950i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.615011 + 0.446277i\)
\(L(\frac12)\) \(\approx\) \(0.615011 + 0.446277i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-1 - 2i)T \)
13 \( 1 \)
good2 \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (1.73 - i)T + (1.5 - 2.59i)T^{2} \)
7 \( 1 + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-1.73 + i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-5.19 - 3i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (5.19 - 3i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 6iT - 31T^{2} \)
37 \( 1 + (-3 - 5.19i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (6.92 - 4i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (5.19 + 3i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 12iT - 53T^{2} \)
59 \( 1 + (1.73 + i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (3 - 5.19i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-6 - 10.3i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-1.73 - i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + (6.92 - 4i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (3 - 5.19i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22675583784131688528696208621, −10.01816482976655573799762337851, −9.135208422111695792614354531980, −7.77875680571736298777891412404, −6.61495812378593436749198472706, −5.90482129107836250836478473266, −5.35634561490902297794113386511, −3.86541311190253425352651744764, −2.75011617265144084398944885242, −1.40753808505650202779905899774, 0.48696662374071315743323576686, 2.01109780497392606244220780668, 3.67409276565293594558677317033, 5.06610849070283794554985627624, 5.82209310858412318500454234240, 6.59828531183439023498864007677, 7.30270686721348279835128701238, 8.237554512422933951715464028087, 9.105004127268454572309695347243, 9.757582921613768379213799089877

Graph of the $Z$-function along the critical line