L(s) = 1 | + (−1.94 + 1.12i)2-s + (0.514 − 1.91i)3-s + (1.53 − 2.65i)4-s + (−0.247 − 2.22i)5-s + (1.15 + 4.31i)6-s + (−0.638 + 1.10i)7-s + 2.39i·8-s + (−0.820 − 0.473i)9-s + (2.98 + 4.05i)10-s + (−1.41 + 5.27i)11-s + (−4.30 − 4.30i)12-s − 2.87i·14-s + (−4.39 − 0.666i)15-s + (0.365 + 0.633i)16-s + (−3.11 + 0.833i)17-s + 2.13·18-s + ⋯ |
L(s) = 1 | + (−1.37 + 0.795i)2-s + (0.296 − 1.10i)3-s + (0.766 − 1.32i)4-s + (−0.110 − 0.993i)5-s + (0.472 + 1.76i)6-s + (−0.241 + 0.418i)7-s + 0.848i·8-s + (−0.273 − 0.157i)9-s + (0.943 + 1.28i)10-s + (−0.426 + 1.59i)11-s + (−1.24 − 1.24i)12-s − 0.768i·14-s + (−1.13 − 0.172i)15-s + (0.0913 + 0.158i)16-s + (−0.754 + 0.202i)17-s + 0.502·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.293 - 0.955i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.293 - 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.217193 + 0.293889i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.217193 + 0.293889i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.247 + 2.22i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (1.94 - 1.12i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.514 + 1.91i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (0.638 - 1.10i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.41 - 5.27i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (3.11 - 0.833i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.17 - 0.315i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.160 + 0.0428i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (8.41 - 4.85i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.233 - 0.233i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.660 - 1.14i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.483 - 0.129i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.72 - 6.43i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + 3.20T + 47T^{2} \) |
| 53 | \( 1 + (-4.49 - 4.49i)T + 53iT^{2} \) |
| 59 | \( 1 + (-0.000595 - 0.00222i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (0.695 - 1.20i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.26 + 3.03i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.14 - 11.7i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 7.34iT - 73T^{2} \) |
| 79 | \( 1 - 11.1iT - 79T^{2} \) |
| 83 | \( 1 + 2.65T + 83T^{2} \) |
| 89 | \( 1 + (6.96 + 1.86i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (3.62 + 2.09i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.973190533523095819997104061721, −9.325731565516576870870267198800, −8.632626364842660819250316688346, −7.86445385467574321835213280987, −7.30154697578829511933577890685, −6.58458989413385604479690669943, −5.52150594868061906355404120694, −4.32633115614740930470078915050, −2.21403134661476178188291967679, −1.37713461139747705644991336144,
0.27557898599933907614561398826, 2.30251834534769965002577652905, 3.29693331470196501464841157617, 3.94188682090598800179604077578, 5.54902641259005424173502733689, 6.77847173187448542775312695256, 7.74063486849168192149127964859, 8.586643420876632945907413585915, 9.299092363968461692270821388831, 10.01251702688155489218448275327