L(s) = 1 | − 2.30i·2-s + 3-s − 3.30·4-s − i·5-s − 2.30i·6-s + i·7-s + 3.00i·8-s − 2·9-s − 2.30·10-s − 1.60i·11-s − 3.30·12-s + 2.30·14-s − i·15-s + 0.302·16-s − 7.60·17-s + 4.60i·18-s + ⋯ |
L(s) = 1 | − 1.62i·2-s + 0.577·3-s − 1.65·4-s − 0.447i·5-s − 0.940i·6-s + 0.377i·7-s + 1.06i·8-s − 0.666·9-s − 0.728·10-s − 0.484i·11-s − 0.953·12-s + 0.615·14-s − 0.258i·15-s + 0.0756·16-s − 1.84·17-s + 1.08i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.449947 + 0.840735i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.449947 + 0.840735i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + iT \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + 2.30iT - 2T^{2} \) |
| 3 | \( 1 - T + 3T^{2} \) |
| 7 | \( 1 - iT - 7T^{2} \) |
| 11 | \( 1 + 1.60iT - 11T^{2} \) |
| 17 | \( 1 + 7.60T + 17T^{2} \) |
| 19 | \( 1 + 5.60iT - 19T^{2} \) |
| 23 | \( 1 - 3T + 23T^{2} \) |
| 29 | \( 1 + 6.21T + 29T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 + 3.60iT - 37T^{2} \) |
| 41 | \( 1 - 3iT - 41T^{2} \) |
| 43 | \( 1 - 10.2T + 43T^{2} \) |
| 47 | \( 1 + 9.21iT - 47T^{2} \) |
| 53 | \( 1 + 3.21T + 53T^{2} \) |
| 59 | \( 1 - 10.8iT - 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 + 7iT - 67T^{2} \) |
| 71 | \( 1 - 4.81iT - 71T^{2} \) |
| 73 | \( 1 - 0.788iT - 73T^{2} \) |
| 79 | \( 1 - 5.21T + 79T^{2} \) |
| 83 | \( 1 + 9.21iT - 83T^{2} \) |
| 89 | \( 1 - 6.21iT - 89T^{2} \) |
| 97 | \( 1 + 8.39iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.478373121470212273541852611688, −8.978337124948859797220329980388, −8.602386686639780786969910674099, −7.22906494741001589868184350980, −5.88406423917973855382087823922, −4.75462508972006341696082389192, −3.85044484808374319900907784407, −2.73929089197112560829296018160, −2.12010011695616190053804502294, −0.40549553316496237862697245364,
2.27669434407411454835486951992, 3.70913986405087788175847755240, 4.69568588763049536623614362532, 5.78237735914990167729217261077, 6.54615210084276495618198769249, 7.35463178769963724688243357952, 7.985501698632387911045098677466, 8.879607360961337695517342906078, 9.400906749326587168323894969927, 10.64517743373942906777073806399