Properties

Label 2-840-840.293-c0-0-7
Degree $2$
Conductor $840$
Sign $0.973 - 0.229i$
Analytic cond. $0.419214$
Root an. cond. $0.647467$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (0.707 + 0.707i)5-s + 1.00i·6-s − 7-s + (0.707 + 0.707i)8-s − 1.00i·9-s − 1.00·10-s + 1.41·11-s + (−0.707 − 0.707i)12-s + (0.707 − 0.707i)14-s + 1.00·15-s − 1.00·16-s + (0.707 + 0.707i)18-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (0.707 + 0.707i)5-s + 1.00i·6-s − 7-s + (0.707 + 0.707i)8-s − 1.00i·9-s − 1.00·10-s + 1.41·11-s + (−0.707 − 0.707i)12-s + (0.707 − 0.707i)14-s + 1.00·15-s − 1.00·16-s + (0.707 + 0.707i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.973 - 0.229i$
Analytic conductor: \(0.419214\)
Root analytic conductor: \(0.647467\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{840} (293, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 840,\ (\ :0),\ 0.973 - 0.229i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9424799919\)
\(L(\frac12)\) \(\approx\) \(0.9424799919\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 - 0.707i)T \)
3 \( 1 + (-0.707 + 0.707i)T \)
5 \( 1 + (-0.707 - 0.707i)T \)
7 \( 1 + T \)
good11 \( 1 - 1.41T + T^{2} \)
13 \( 1 + iT^{2} \)
17 \( 1 - iT^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - iT^{2} \)
29 \( 1 - 1.41iT - T^{2} \)
31 \( 1 + 2iT - T^{2} \)
37 \( 1 + iT^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 - iT^{2} \)
53 \( 1 + iT^{2} \)
59 \( 1 + 1.41T + T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 + iT^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (1 - i)T - iT^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (1 + i)T + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02602407564292278200628695749, −9.346071787385526531448975983188, −8.965905496260437022994651597748, −7.75825478239488436021663627963, −6.89878225182377923035173813460, −6.46664504832763742085721758931, −5.72969406582502122066008486287, −3.91169756674228815526789900147, −2.69753690623999916111458804712, −1.46609455537118567618431703134, 1.55736254204345694322269012688, 2.82393587298750721365292387016, 3.78666591594725017670674313178, 4.65672707454783916310996498452, 6.09861588897084043394820675623, 7.10712888537064358741699816559, 8.351172049655512445844971551239, 8.971656165972742709272504859571, 9.538774521510132410758318226946, 10.03653258249946448263029217227

Graph of the $Z$-function along the critical line