Properties

Label 2-840-1.1-c1-0-1
Degree $2$
Conductor $840$
Sign $1$
Analytic cond. $6.70743$
Root an. cond. $2.58987$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s + 2·13-s − 15-s + 2·17-s + 21-s + 25-s − 27-s + 6·29-s + 4·31-s − 35-s − 2·37-s − 2·39-s + 10·41-s + 4·43-s + 45-s + 49-s − 2·51-s + 2·53-s + 4·59-s + 6·61-s − 63-s + 2·65-s − 12·67-s + 12·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.258·15-s + 0.485·17-s + 0.218·21-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 0.718·31-s − 0.169·35-s − 0.328·37-s − 0.320·39-s + 1.56·41-s + 0.609·43-s + 0.149·45-s + 1/7·49-s − 0.280·51-s + 0.274·53-s + 0.520·59-s + 0.768·61-s − 0.125·63-s + 0.248·65-s − 1.46·67-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(840\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(6.70743\)
Root analytic conductor: \(2.58987\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.387878322\)
\(L(\frac12)\) \(\approx\) \(1.387878322\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25433762842440888827318619309, −9.489763666912341698118938418929, −8.582172802159158584080485405705, −7.56372664903441496690654081739, −6.53867770269247743908882645220, −5.92951446486079174583591122396, −4.96841409459491319087151202406, −3.86212103760575002233404144776, −2.59581724541211640514162451669, −1.03367082197206844928064846342, 1.03367082197206844928064846342, 2.59581724541211640514162451669, 3.86212103760575002233404144776, 4.96841409459491319087151202406, 5.92951446486079174583591122396, 6.53867770269247743908882645220, 7.56372664903441496690654081739, 8.582172802159158584080485405705, 9.489763666912341698118938418929, 10.25433762842440888827318619309

Graph of the $Z$-function along the critical line