L(s) = 1 | + (−4.5 − 7.79i)3-s + (9.28 − 16.0i)5-s + (−127. + 22.6i)7-s + (−40.5 + 70.1i)9-s + (80.7 + 139. i)11-s + 14.1·13-s − 167.·15-s + (382. + 663. i)17-s + (−707. + 1.22e3i)19-s + (750. + 893. i)21-s + (−2.09e3 + 3.62e3i)23-s + (1.38e3 + 2.40e3i)25-s + 729·27-s − 4.20e3·29-s + (1.19e3 + 2.06e3i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.166 − 0.287i)5-s + (−0.984 + 0.174i)7-s + (−0.166 + 0.288i)9-s + (0.201 + 0.348i)11-s + 0.0231·13-s − 0.191·15-s + (0.321 + 0.556i)17-s + (−0.449 + 0.778i)19-s + (0.371 + 0.441i)21-s + (−0.824 + 1.42i)23-s + (0.444 + 0.770i)25-s + 0.192·27-s − 0.927·29-s + (0.223 + 0.386i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.236 - 0.971i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.236 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.420563 + 0.535315i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.420563 + 0.535315i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 + (127. - 22.6i)T \) |
good | 5 | \( 1 + (-9.28 + 16.0i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-80.7 - 139. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 14.1T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-382. - 663. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (707. - 1.22e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (2.09e3 - 3.62e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 4.20e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.19e3 - 2.06e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-336. + 582. i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 4.17e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 5.43e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (3.15e3 - 5.45e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (8.20e3 + 1.42e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.98e3 + 3.43e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-2.51e4 + 4.35e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (6.82e3 + 1.18e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 8.39e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-1.42e4 - 2.47e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-2.99e4 + 5.19e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 6.15e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (2.11e4 - 3.66e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 4.46e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.31941268520593710726393287262, −12.64108948737351152459860660333, −11.65755482314712753275476612338, −10.23529982403254079026505839229, −9.229906250379144721349727138087, −7.82317852839614520897010367604, −6.53547292710622975556494647681, −5.48120750112419088273079071298, −3.58947779920033430569995968377, −1.66232514891216347565067728470,
0.28835352411922524929152281949, 2.82299099144683285795690919074, 4.29402426594618259775622973822, 5.92918858536184659044975163765, 6.92978397891735721025252232725, 8.657408210756200445601072456362, 9.814424209138384949204326472181, 10.64471633889285557328115468650, 11.85755440863421857066886354061, 12.99351674760848623853549496902