Properties

Label 2-84-1.1-c7-0-4
Degree 22
Conductor 8484
Sign 1-1
Analytic cond. 26.240326.2403
Root an. cond. 5.122535.12253
Motivic weight 77
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s + 100·5-s − 343·7-s + 729·9-s + 2.77e3·11-s − 3.29e3·13-s − 2.70e3·15-s + 5.90e3·17-s + 6.64e3·19-s + 9.26e3·21-s + 1.98e3·23-s − 6.81e4·25-s − 1.96e4·27-s − 2.08e5·29-s − 1.17e5·31-s − 7.48e4·33-s − 3.43e4·35-s − 3.35e5·37-s + 8.89e4·39-s − 2.65e5·41-s − 9.32e4·43-s + 7.29e4·45-s − 6.57e5·47-s + 1.17e5·49-s − 1.59e5·51-s − 6.08e5·53-s + 2.77e5·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.357·5-s − 0.377·7-s + 1/3·9-s + 0.628·11-s − 0.415·13-s − 0.206·15-s + 0.291·17-s + 0.222·19-s + 0.218·21-s + 0.0339·23-s − 0.871·25-s − 0.192·27-s − 1.58·29-s − 0.710·31-s − 0.362·33-s − 0.135·35-s − 1.08·37-s + 0.240·39-s − 0.601·41-s − 0.178·43-s + 0.119·45-s − 0.923·47-s + 1/7·49-s − 0.168·51-s − 0.561·53-s + 0.224·55-s + ⋯

Functional equation

Λ(s)=(84s/2ΓC(s)L(s)=(Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}
Λ(s)=(84s/2ΓC(s+7/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 8484    =    22372^{2} \cdot 3 \cdot 7
Sign: 1-1
Analytic conductor: 26.240326.2403
Root analytic conductor: 5.122535.12253
Motivic weight: 77
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 84, ( :7/2), 1)(2,\ 84,\ (\ :7/2),\ -1)

Particular Values

L(4)L(4) == 00
L(12)L(\frac12) == 00
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+p3T 1 + p^{3} T
7 1+p3T 1 + p^{3} T
good5 14p2T+p7T2 1 - 4 p^{2} T + p^{7} T^{2}
11 12774T+p7T2 1 - 2774 T + p^{7} T^{2}
13 1+3294T+p7T2 1 + 3294 T + p^{7} T^{2}
17 15900T+p7T2 1 - 5900 T + p^{7} T^{2}
19 16644T+p7T2 1 - 6644 T + p^{7} T^{2}
23 11982T+p7T2 1 - 1982 T + p^{7} T^{2}
29 1+208106T+p7T2 1 + 208106 T + p^{7} T^{2}
31 1+117792T+p7T2 1 + 117792 T + p^{7} T^{2}
37 1+335686T+p7T2 1 + 335686 T + p^{7} T^{2}
41 1+265488T+p7T2 1 + 265488 T + p^{7} T^{2}
43 1+93292T+p7T2 1 + 93292 T + p^{7} T^{2}
47 1+657516T+p7T2 1 + 657516 T + p^{7} T^{2}
53 1+608718T+p7T2 1 + 608718 T + p^{7} T^{2}
59 1+536120T+p7T2 1 + 536120 T + p^{7} T^{2}
61 1+1797090T+p7T2 1 + 1797090 T + p^{7} T^{2}
67 12123176T+p7T2 1 - 2123176 T + p^{7} T^{2}
71 1+1191214T+p7T2 1 + 1191214 T + p^{7} T^{2}
73 11056430T+p7T2 1 - 1056430 T + p^{7} T^{2}
79 1998484T+p7T2 1 - 998484 T + p^{7} T^{2}
83 13898004T+p7T2 1 - 3898004 T + p^{7} T^{2}
89 1+4622352T+p7T2 1 + 4622352 T + p^{7} T^{2}
97 115287710T+p7T2 1 - 15287710 T + p^{7} T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.26327752688485113692119052833, −11.28963543910156009299305564943, −10.05912654876854082151654391176, −9.168632393704708287271195018394, −7.51876199311847863803506807154, −6.33469311027517854523544770523, −5.21606738572037131193301105895, −3.62403721098224109192558892109, −1.72781302756464489008368950815, 0, 1.72781302756464489008368950815, 3.62403721098224109192558892109, 5.21606738572037131193301105895, 6.33469311027517854523544770523, 7.51876199311847863803506807154, 9.168632393704708287271195018394, 10.05912654876854082151654391176, 11.28963543910156009299305564943, 12.26327752688485113692119052833

Graph of the ZZ-function along the critical line