Properties

Label 2-84-1.1-c5-0-0
Degree $2$
Conductor $84$
Sign $1$
Analytic cond. $13.4722$
Root an. cond. $3.67045$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 77.6·5-s − 49·7-s + 81·9-s + 477.·11-s − 63.7·13-s + 698.·15-s + 1.03e3·17-s − 667.·19-s + 441·21-s + 3.25e3·23-s + 2.90e3·25-s − 729·27-s + 2.30e3·29-s + 3.71e3·31-s − 4.29e3·33-s + 3.80e3·35-s + 1.22e4·37-s + 573.·39-s − 1.82e3·41-s − 2.07e4·43-s − 6.28e3·45-s − 4.28e3·47-s + 2.40e3·49-s − 9.33e3·51-s + 2.57e4·53-s − 3.70e4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.38·5-s − 0.377·7-s + 0.333·9-s + 1.18·11-s − 0.104·13-s + 0.801·15-s + 0.870·17-s − 0.423·19-s + 0.218·21-s + 1.28·23-s + 0.928·25-s − 0.192·27-s + 0.508·29-s + 0.694·31-s − 0.686·33-s + 0.524·35-s + 1.47·37-s + 0.0604·39-s − 0.169·41-s − 1.71·43-s − 0.462·45-s − 0.282·47-s + 0.142·49-s − 0.502·51-s + 1.25·53-s − 1.65·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(84\)    =    \(2^{2} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(13.4722\)
Root analytic conductor: \(3.67045\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 84,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.065233244\)
\(L(\frac12)\) \(\approx\) \(1.065233244\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
7 \( 1 + 49T \)
good5 \( 1 + 77.6T + 3.12e3T^{2} \)
11 \( 1 - 477.T + 1.61e5T^{2} \)
13 \( 1 + 63.7T + 3.71e5T^{2} \)
17 \( 1 - 1.03e3T + 1.41e6T^{2} \)
19 \( 1 + 667.T + 2.47e6T^{2} \)
23 \( 1 - 3.25e3T + 6.43e6T^{2} \)
29 \( 1 - 2.30e3T + 2.05e7T^{2} \)
31 \( 1 - 3.71e3T + 2.86e7T^{2} \)
37 \( 1 - 1.22e4T + 6.93e7T^{2} \)
41 \( 1 + 1.82e3T + 1.15e8T^{2} \)
43 \( 1 + 2.07e4T + 1.47e8T^{2} \)
47 \( 1 + 4.28e3T + 2.29e8T^{2} \)
53 \( 1 - 2.57e4T + 4.18e8T^{2} \)
59 \( 1 + 2.83e3T + 7.14e8T^{2} \)
61 \( 1 - 1.68e4T + 8.44e8T^{2} \)
67 \( 1 + 6.25e4T + 1.35e9T^{2} \)
71 \( 1 - 7.23e4T + 1.80e9T^{2} \)
73 \( 1 + 5.56e4T + 2.07e9T^{2} \)
79 \( 1 + 3.98e3T + 3.07e9T^{2} \)
83 \( 1 + 4.60e4T + 3.93e9T^{2} \)
89 \( 1 - 1.35e5T + 5.58e9T^{2} \)
97 \( 1 - 1.42e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04589591097800448108816067438, −11.95372122001901036564881757161, −11.45809232237543543265642907831, −10.11197894600984929543742669939, −8.728896099444783214461133209925, −7.44464416532910332841273569285, −6.37066729040917812049820557988, −4.64553794718278098278065448766, −3.44196985942801103584946040914, −0.812487711873018734811142710361, 0.812487711873018734811142710361, 3.44196985942801103584946040914, 4.64553794718278098278065448766, 6.37066729040917812049820557988, 7.44464416532910332841273569285, 8.728896099444783214461133209925, 10.11197894600984929543742669939, 11.45809232237543543265642907831, 11.95372122001901036564881757161, 13.04589591097800448108816067438

Graph of the $Z$-function along the critical line