Properties

Label 2-8379-1.1-c1-0-92
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.39·2-s − 0.0513·4-s + 3.05·5-s + 2.86·8-s − 4.25·10-s − 5.31·11-s + 3.31·13-s − 3.89·16-s + 0.948·17-s + 19-s − 0.156·20-s + 7.41·22-s − 1.31·23-s + 4.31·25-s − 4.62·26-s + 7.84·29-s + 4.79·31-s − 0.290·32-s − 1.32·34-s − 8.62·37-s − 1.39·38-s + 8.73·40-s + 11.3·41-s + 3.20·43-s + 0.272·44-s + 1.82·46-s − 5.84·47-s + ⋯
L(s)  = 1  − 0.987·2-s − 0.0256·4-s + 1.36·5-s + 1.01·8-s − 1.34·10-s − 1.60·11-s + 0.918·13-s − 0.973·16-s + 0.230·17-s + 0.229·19-s − 0.0350·20-s + 1.58·22-s − 0.273·23-s + 0.862·25-s − 0.906·26-s + 1.45·29-s + 0.860·31-s − 0.0513·32-s − 0.227·34-s − 1.41·37-s − 0.226·38-s + 1.38·40-s + 1.76·41-s + 0.489·43-s + 0.0411·44-s + 0.269·46-s − 0.852·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.351064052\)
\(L(\frac12)\) \(\approx\) \(1.351064052\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + 1.39T + 2T^{2} \)
5 \( 1 - 3.05T + 5T^{2} \)
11 \( 1 + 5.31T + 11T^{2} \)
13 \( 1 - 3.31T + 13T^{2} \)
17 \( 1 - 0.948T + 17T^{2} \)
23 \( 1 + 1.31T + 23T^{2} \)
29 \( 1 - 7.84T + 29T^{2} \)
31 \( 1 - 4.79T + 31T^{2} \)
37 \( 1 + 8.62T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 - 3.20T + 43T^{2} \)
47 \( 1 + 5.84T + 47T^{2} \)
53 \( 1 - 2.77T + 53T^{2} \)
59 \( 1 + 8.20T + 59T^{2} \)
61 \( 1 + 12.6T + 61T^{2} \)
67 \( 1 + 4.51T + 67T^{2} \)
71 \( 1 - 13.5T + 71T^{2} \)
73 \( 1 - 4.10T + 73T^{2} \)
79 \( 1 + 8.20T + 79T^{2} \)
83 \( 1 + 6.36T + 83T^{2} \)
89 \( 1 - 15.5T + 89T^{2} \)
97 \( 1 + 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.959419123206823320520030643860, −7.34147212169048069406056249531, −6.36189334332034868921963090791, −5.83831624011256005615186584212, −5.06867335727920224566554716107, −4.49043558764623789870469265096, −3.22425816374626620092904113684, −2.41103761521627434800362588944, −1.60207718185502690563909520429, −0.69244756312579631093206668898, 0.69244756312579631093206668898, 1.60207718185502690563909520429, 2.41103761521627434800362588944, 3.22425816374626620092904113684, 4.49043558764623789870469265096, 5.06867335727920224566554716107, 5.83831624011256005615186584212, 6.36189334332034868921963090791, 7.34147212169048069406056249531, 7.959419123206823320520030643860

Graph of the $Z$-function along the critical line