Properties

Label 2-8379-1.1-c1-0-91
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.92·2-s + 1.68·4-s − 2.00·5-s − 0.600·8-s − 3.85·10-s + 0.645·11-s + 0.232·13-s − 4.52·16-s + 5.71·17-s + 19-s − 3.38·20-s + 1.23·22-s − 4.21·23-s − 0.972·25-s + 0.447·26-s − 3.65·29-s − 1.75·31-s − 7.49·32-s + 10.9·34-s + 3.06·37-s + 1.92·38-s + 1.20·40-s + 6.88·41-s + 3.13·43-s + 1.08·44-s − 8.09·46-s + 12.5·47-s + ⋯
L(s)  = 1  + 1.35·2-s + 0.843·4-s − 0.897·5-s − 0.212·8-s − 1.21·10-s + 0.194·11-s + 0.0646·13-s − 1.13·16-s + 1.38·17-s + 0.229·19-s − 0.757·20-s + 0.264·22-s − 0.878·23-s − 0.194·25-s + 0.0877·26-s − 0.678·29-s − 0.314·31-s − 1.32·32-s + 1.88·34-s + 0.504·37-s + 0.311·38-s + 0.190·40-s + 1.07·41-s + 0.477·43-s + 0.164·44-s − 1.19·46-s + 1.82·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.130684347\)
\(L(\frac12)\) \(\approx\) \(3.130684347\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 1.92T + 2T^{2} \)
5 \( 1 + 2.00T + 5T^{2} \)
11 \( 1 - 0.645T + 11T^{2} \)
13 \( 1 - 0.232T + 13T^{2} \)
17 \( 1 - 5.71T + 17T^{2} \)
23 \( 1 + 4.21T + 23T^{2} \)
29 \( 1 + 3.65T + 29T^{2} \)
31 \( 1 + 1.75T + 31T^{2} \)
37 \( 1 - 3.06T + 37T^{2} \)
41 \( 1 - 6.88T + 41T^{2} \)
43 \( 1 - 3.13T + 43T^{2} \)
47 \( 1 - 12.5T + 47T^{2} \)
53 \( 1 - 0.719T + 53T^{2} \)
59 \( 1 + 3.78T + 59T^{2} \)
61 \( 1 + 3.12T + 61T^{2} \)
67 \( 1 - 3.07T + 67T^{2} \)
71 \( 1 - 6.14T + 71T^{2} \)
73 \( 1 - 3.95T + 73T^{2} \)
79 \( 1 + 14.1T + 79T^{2} \)
83 \( 1 - 15.6T + 83T^{2} \)
89 \( 1 - 8.41T + 89T^{2} \)
97 \( 1 + 15.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60590162035796000431790408425, −7.13463043177137143884074901941, −5.97806928997979024040308646616, −5.80901092067478088766126807824, −4.90161002595437746065167186598, −4.10926437476772647884058894933, −3.74055839257893784521660381342, −3.02731481217454499601709638176, −2.07285033900573733934324373282, −0.69243298039447954388900537831, 0.69243298039447954388900537831, 2.07285033900573733934324373282, 3.02731481217454499601709638176, 3.74055839257893784521660381342, 4.10926437476772647884058894933, 4.90161002595437746065167186598, 5.80901092067478088766126807824, 5.97806928997979024040308646616, 7.13463043177137143884074901941, 7.60590162035796000431790408425

Graph of the $Z$-function along the critical line