Properties

Label 2-8379-1.1-c1-0-84
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.34·2-s + 3.51·4-s − 0.517·5-s − 3.56·8-s + 1.21·10-s + 3.73·11-s − 5.73·13-s + 1.33·16-s + 4.51·17-s + 19-s − 1.81·20-s − 8.76·22-s + 7.73·23-s − 4.73·25-s + 13.4·26-s + 6.18·29-s + 6.69·31-s + 3.98·32-s − 10.6·34-s + 9.46·37-s − 2.34·38-s + 1.84·40-s + 2.26·41-s + 1.30·43-s + 13.1·44-s − 18.1·46-s − 4.18·47-s + ⋯
L(s)  = 1  − 1.66·2-s + 1.75·4-s − 0.231·5-s − 1.26·8-s + 0.384·10-s + 1.12·11-s − 1.58·13-s + 0.334·16-s + 1.09·17-s + 0.229·19-s − 0.406·20-s − 1.86·22-s + 1.61·23-s − 0.946·25-s + 2.64·26-s + 1.14·29-s + 1.20·31-s + 0.704·32-s − 1.81·34-s + 1.55·37-s − 0.381·38-s + 0.291·40-s + 0.354·41-s + 0.198·43-s + 1.97·44-s − 2.67·46-s − 0.609·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9254160149\)
\(L(\frac12)\) \(\approx\) \(0.9254160149\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + 2.34T + 2T^{2} \)
5 \( 1 + 0.517T + 5T^{2} \)
11 \( 1 - 3.73T + 11T^{2} \)
13 \( 1 + 5.73T + 13T^{2} \)
17 \( 1 - 4.51T + 17T^{2} \)
23 \( 1 - 7.73T + 23T^{2} \)
29 \( 1 - 6.18T + 29T^{2} \)
31 \( 1 - 6.69T + 31T^{2} \)
37 \( 1 - 9.46T + 37T^{2} \)
41 \( 1 - 2.26T + 41T^{2} \)
43 \( 1 - 1.30T + 43T^{2} \)
47 \( 1 + 4.18T + 47T^{2} \)
53 \( 1 + 13.6T + 53T^{2} \)
59 \( 1 - 6.06T + 59T^{2} \)
61 \( 1 - 5.46T + 61T^{2} \)
67 \( 1 - 6.43T + 67T^{2} \)
71 \( 1 + 0.947T + 71T^{2} \)
73 \( 1 + 3.03T + 73T^{2} \)
79 \( 1 - 6.06T + 79T^{2} \)
83 \( 1 - 6.24T + 83T^{2} \)
89 \( 1 + 7.80T + 89T^{2} \)
97 \( 1 + 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.040503325192098615768478045077, −7.21816351703681730503245660755, −6.81853913916107782716655170822, −6.05079653621121375699049530090, −4.99732096875056796278920151951, −4.30829029838486827145038198902, −3.11432771621227519232839934232, −2.47217448521835483427554478505, −1.34656319873359377581141673665, −0.68050745680695219004773925274, 0.68050745680695219004773925274, 1.34656319873359377581141673665, 2.47217448521835483427554478505, 3.11432771621227519232839934232, 4.30829029838486827145038198902, 4.99732096875056796278920151951, 6.05079653621121375699049530090, 6.81853913916107782716655170822, 7.21816351703681730503245660755, 8.040503325192098615768478045077

Graph of the $Z$-function along the critical line