Properties

Label 2-8379-1.1-c1-0-5
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5.19·11-s − 2·13-s + 4·16-s − 5.19·17-s − 19-s − 5.19·23-s − 5·25-s − 10.3·29-s − 2·31-s + 8·37-s − 10.3·41-s − 4·43-s + 10.3·44-s + 5.19·47-s + 4·52-s + 10.3·59-s − 5·61-s − 8·64-s + 2·67-s + 10.3·68-s + 10.3·71-s + 7·73-s + 2·76-s − 4·79-s + 15.5·83-s − 10.3·89-s + ⋯
L(s)  = 1  − 4-s − 1.56·11-s − 0.554·13-s + 16-s − 1.26·17-s − 0.229·19-s − 1.08·23-s − 25-s − 1.92·29-s − 0.359·31-s + 1.31·37-s − 1.62·41-s − 0.609·43-s + 1.56·44-s + 0.757·47-s + 0.554·52-s + 1.35·59-s − 0.640·61-s − 64-s + 0.244·67-s + 1.26·68-s + 1.23·71-s + 0.819·73-s + 0.229·76-s − 0.450·79-s + 1.71·83-s − 1.10·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2452394693\)
\(L(\frac12)\) \(\approx\) \(0.2452394693\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 2T^{2} \)
5 \( 1 + 5T^{2} \)
11 \( 1 + 5.19T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 5.19T + 17T^{2} \)
23 \( 1 + 5.19T + 23T^{2} \)
29 \( 1 + 10.3T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 + 10.3T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 5.19T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 5T + 61T^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 - 10.3T + 71T^{2} \)
73 \( 1 - 7T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 15.5T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.953304024105289850542819598740, −7.28799236158921561840126538127, −6.33798044195121852937827189449, −5.45605498291746381243154199207, −5.15301153524000825427470216468, −4.21136029630034491208465083764, −3.71759417121270089722289435276, −2.55870000690771094728438154702, −1.89305281107940542264848830881, −0.22981894718837879423769648122, 0.22981894718837879423769648122, 1.89305281107940542264848830881, 2.55870000690771094728438154702, 3.71759417121270089722289435276, 4.21136029630034491208465083764, 5.15301153524000825427470216468, 5.45605498291746381243154199207, 6.33798044195121852937827189449, 7.28799236158921561840126538127, 7.953304024105289850542819598740

Graph of the $Z$-function along the critical line