Properties

Label 2-8379-1.1-c1-0-277
Degree $2$
Conductor $8379$
Sign $-1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.30·2-s + 3.30·4-s − 3·5-s + 3.00·8-s − 6.90·10-s + 0.697·11-s + 5.60·13-s + 0.302·16-s − 5.30·17-s − 19-s − 9.90·20-s + 1.60·22-s + 3·23-s + 4·25-s + 12.9·26-s − 9.90·29-s − 1.30·31-s − 5.30·32-s − 12.2·34-s + 3.60·37-s − 2.30·38-s − 9.00·40-s + 0.697·41-s − 10·43-s + 2.30·44-s + 6.90·46-s + 6.21·47-s + ⋯
L(s)  = 1  + 1.62·2-s + 1.65·4-s − 1.34·5-s + 1.06·8-s − 2.18·10-s + 0.210·11-s + 1.55·13-s + 0.0756·16-s − 1.28·17-s − 0.229·19-s − 2.21·20-s + 0.342·22-s + 0.625·23-s + 0.800·25-s + 2.53·26-s − 1.83·29-s − 0.233·31-s − 0.937·32-s − 2.09·34-s + 0.592·37-s − 0.373·38-s − 1.42·40-s + 0.108·41-s − 1.52·43-s + 0.347·44-s + 1.01·46-s + 0.905·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 2.30T + 2T^{2} \)
5 \( 1 + 3T + 5T^{2} \)
11 \( 1 - 0.697T + 11T^{2} \)
13 \( 1 - 5.60T + 13T^{2} \)
17 \( 1 + 5.30T + 17T^{2} \)
23 \( 1 - 3T + 23T^{2} \)
29 \( 1 + 9.90T + 29T^{2} \)
31 \( 1 + 1.30T + 31T^{2} \)
37 \( 1 - 3.60T + 37T^{2} \)
41 \( 1 - 0.697T + 41T^{2} \)
43 \( 1 + 10T + 43T^{2} \)
47 \( 1 - 6.21T + 47T^{2} \)
53 \( 1 - 6.90T + 53T^{2} \)
59 \( 1 + 6.21T + 59T^{2} \)
61 \( 1 - 4.21T + 61T^{2} \)
67 \( 1 + 1.90T + 67T^{2} \)
71 \( 1 + 12.2T + 71T^{2} \)
73 \( 1 + 1.51T + 73T^{2} \)
79 \( 1 - 11.2T + 79T^{2} \)
83 \( 1 + 12.9T + 83T^{2} \)
89 \( 1 + 10.6T + 89T^{2} \)
97 \( 1 + 9.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.18604856433000859325774601653, −6.65011762425711227739276756987, −5.95983835796328862605639317692, −5.26643689857157167913668966383, −4.36878364394392104001172225143, −3.95845000724784734236020876983, −3.49795014589698163845837669879, −2.61212895227803993785347583972, −1.52000677817342647957944882485, 0, 1.52000677817342647957944882485, 2.61212895227803993785347583972, 3.49795014589698163845837669879, 3.95845000724784734236020876983, 4.36878364394392104001172225143, 5.26643689857157167913668966383, 5.95983835796328862605639317692, 6.65011762425711227739276756987, 7.18604856433000859325774601653

Graph of the $Z$-function along the critical line