Properties

Label 2-8379-1.1-c1-0-269
Degree $2$
Conductor $8379$
Sign $-1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 2·5-s − 3·8-s + 2·10-s + 6·11-s − 6·13-s − 16-s + 2·17-s − 19-s − 2·20-s + 6·22-s − 6·23-s − 25-s − 6·26-s + 6·29-s − 8·31-s + 5·32-s + 2·34-s − 2·37-s − 38-s − 6·40-s − 8·43-s − 6·44-s − 6·46-s + 8·47-s − 50-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.894·5-s − 1.06·8-s + 0.632·10-s + 1.80·11-s − 1.66·13-s − 1/4·16-s + 0.485·17-s − 0.229·19-s − 0.447·20-s + 1.27·22-s − 1.25·23-s − 1/5·25-s − 1.17·26-s + 1.11·29-s − 1.43·31-s + 0.883·32-s + 0.342·34-s − 0.328·37-s − 0.162·38-s − 0.948·40-s − 1.21·43-s − 0.904·44-s − 0.884·46-s + 1.16·47-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23345997293065820415198566041, −6.62581522472163352001088769627, −5.86457100704306789503027080761, −5.45721547895839729519316087515, −4.54154552955351369529142238877, −4.06482317085525828355758382154, −3.22299135002408101319055649432, −2.27958244762200813940683648068, −1.42463212923715253077410185699, 0, 1.42463212923715253077410185699, 2.27958244762200813940683648068, 3.22299135002408101319055649432, 4.06482317085525828355758382154, 4.54154552955351369529142238877, 5.45721547895839729519316087515, 5.86457100704306789503027080761, 6.62581522472163352001088769627, 7.23345997293065820415198566041

Graph of the $Z$-function along the critical line